Секреты цветных бактерий: фотосинтез и его особенности. Цианобактерии умеют «закорачивать» процесс фотосинтеза У цианобактерий фотосинтез протекает на


Фотосинтез лежит в основе всей жизни на нашей планете. Этот процесс, идущий в наземных растениях, водорослях и многих видах бактерий определяет существование практически всех форм жизни на Земле, преобразуя потоки солнечного света в энергию химических связей, которая затем уже шаг за шагом передается к вершинам многочисленных пищевых цепочек.

Скорее всего, этот же процесс в свое время положил начало резкому увеличению парциального давления кислорода в атмосфере Земли и снижению доли углекислого газа, что в конечном итоге привело к расцвету многочисленных сложно организованных организмов. И до сих пор, по мнению многих ученых, только фотосинтез способен сдержать стремительный натиск СО 2 , выбрасываемого в воздух в результате ежедневного сжигания человеком миллионов тонн различных видов углеводородного топлива.

Новое открытие американских ученых заставляет по-новому взглянуть на фотосинтетический процесс

В ходе «нормального» фотосинтеза этот жизненно важный газ получается в качестве «побочного продукта». В нормальном режиме фотосинтетические «фабрики» нужны для связывания СО 2 и производства углеводов, выступающих впоследствии в качестве источника энергии во многих внутриклеточных процессах. Световая энергия в этих «фабриках» идет на разложение молекул воды, в ходе которого выделяются необходимые для фиксации углекислого газа и углеводов электроны. При этом разложении выделяется и кислород O 2 .

Во вновь открытом процессе для усваивания углекислого газа используется лишь малая часть выделяющихся при разложении воды электронов. Львиная же их доля в ходе обратного процесса идет на формирование молекул воды из «свежевысвобожденного» кислорода. При этом энергия, преобразуемая в ходе вновь открытого фотосинтетического процесса, не запасается в виде углеводов, а напрямую поступает к жизненно важным внутриклеточным энергопотребителям. Впрочем, детальный механизм такого процесса пока остается загадкой.

Со стороны может показаться, что подобная модификация фотосинтетического процесса является пустой тратой времени и энергии Солнца. Трудно поверить, что в живой природе, где за миллиарды лет эволюционных проб и ошибок каждая мелочь оказалась устроена предельно эффективно, может присутствовать процесс со столь низким КПД.

Тем не менее такой вариант позволяет защитить сложный и хрупкий аппарат фотосинтеза от чрезмерного облучения солнечным светом.

Дело в том, что фотосинтетический процесс в бактериях не может быть попросту остановлен в отсутствие необходимых ингредиентов в окружающей среде. До тех пор пока микроорганизмы подвержены воздействию солнечной радиации, они вынуждены преобразовывать энергию света в энергию химических связей. При отсутствии необходимых компонентов фотосинтез может привести к образованию свободных радикалов, губительных для всей клетки, а потому цианобактерии просто не могут обходиться без запасного варианта преобразования энергии фотонов из воды в воду.

Этот эффект пониженного уровня преобразования СО 2 в углеводы и пониженного же высвобождения молекулярного кислорода уже наблюдался в серии недавних работ в природных условиях Атлантического и Тихого океанов. Как оказалось, пониженного содержание питательных веществ и ионов железа наблюдаются почти в половине их акваторий. Следовательно,

примерно половина энергии солнечного света, приходящаяся на обитателей этих вод, преобразуется в обход привычного механизма поглощения двуокиси углерода и высвобождения кислорода.

А значит, вклад морских автотрофов в процесс поглощения СО 2 был прежде существенно завышен.

Как один из специалистов отдела всемирной экологии Института имени Карнеги Джо Бери, новое открытие существенно изменит наши представления о процессах переработки солнечной энергии в клетках морских микроорганизмов. По его словам, ученым еще предстоит раскрыть механизм нового процесса, но уже сейчас его существование заставит по-иному взглянуть на современные оценки масштабов фотосинтетического поглощения СО 2 в мировых водах.


Бактерии появились на Земле около трех с половиной миллиардов лет назад и миллиард лет были единственной формой жизни на нашей планете. Их строение является одним из наиболее примитивных, однако существуют виды, имеющие ряд существенных улучшений в своей структуре. Например, фотосинтез бактерий, которые также называются синезелеными водорослями, аналогичен тому, который происходит у высших растений. Грибы же не способны к фотосинтезу.

Наиболее просты по строению те бактерии, которые заселяют сероводородсодержащие горячие источники и глубинные придонные отложения ила. Вершиной эволюции считается появление синезеленых водорослей, или цианобактерий.

Вопрос о том, какие из прокариот способны к синтезу, давно уже изучается специалистами-биохимиками. Именно они обнаружили, что некоторые из них способны к самостоятельному питанию. Фотосинтез бактерий похож на тот, который происходит у растений, но имеет целый ряд особенностей.

Аутотрофные прокариоты способны к питанию с помощью фотосинтеза, так как содержат необходимые для этого структуры. Фотосинтез таких бактерий – это способность, обеспечившая возможность существования современных гетеротрофов, таких как грибы, животные, микроорганизмы.

Интересно, что синтез у аутотрофных прокариот происходит в более длинноволновом диапазоне, чем у растений. Зеленые бактерии способны синтезировать органические вещества, поглощая свет длиной волны до 850 нм, у пурпурных, содержащих бактериохлорофилл A, это происходит при длине волны до 900 нм, а у тех, которые содержат бактериохлорофилл B, – до 1100 нм. Если сделать анализ поглощения света in vivo, то окажется, что существует несколько пиков, и находятся они в инфракрасной области спектра. Эта особенность зеленых и пурпурных бактерий дает им возможность существовать в условиях наличия только невидимых инфракрасных лучей.

Одной из необычных разновидностей аутотрофного питания является хемосинтез. Это процесс, в котором энергию для образования органических веществ организм получает из реакции окислительного преобразования неорганических соединений. Фото- и хемосинтез у автотрофных бактерий сходны тем, что энергия от химической реакции окисления сначала накапливается в виде АТФ и только потом передается процессу ассимиляции. К числу видов, жизнедеятельность которых обеспечивает хемосинтез, относятся следующие:

  1. Железобактерии. Существуют за счет окисления железа.
  2. Нитрифицирующие. Хемосинтез этих микроорганизмов настроен на переработку аммиака. Многие являются симбионтами растений.
  3. Серобактерии и тионобактерии. Перерабатывают соединения серы.
  4. Водородные бактерии, хемосинтез которых позволяет им при высокой температуре окислять молекулярный водород.

Бактерии, питание которых обеспечивает хемосинтез, не способны к фотосинтезу, потому что не могут использовать в качестве источника энергии солнечный свет.

Синезеленые водоросли – вершина бактериальной эволюции

Фотосинтез цианей происходит так же, как и у растений, что отличает их от других прокариот, а также грибов, поднимая на высшую степень эволюционного развития. Они являются облигатными фототрофами, так как не могут существовать без света. Однако некоторые имеют способность азотфиксации и образуют симбиозы с высшими растениями (как и некоторые грибы), сохраняя при этом способность к фотосинтезу. Недавно было обнаружено, что у этих прокариот существуют тилакоиды, обособленные от складок клеточной стенки, как у эукариот, что дает возможность сделать выводы о направлении эволюции фотосинтезирующих систем.

Другими известными симбионтами цианей являются грибы. С целью совместного выживания в суровых климатических условиях они вступают в симбиотические отношения. Грибы в этой паре играют роль корней, получая из внешней среды минеральные соли и воду, а водоросли осуществляют фотосинтез, поставляя органические вещества. Водоросли и грибы, входящие в состав лишайников, не смогли бы выжить в таких условиях раздельно. Кроме таких симбионтов, как грибы, у цианей есть ещё друзья среди губок.

Немного о фотосинтезе

Фотосинтез у зеленых растений и прокариот– основа органической жизни на нашей планете. Это процесс образования сахаров из воды и углекислого газа, который происходит при помощи специальных пигментов. Именно благодаря им бактерии, колонии которых окрашены, способны к фотосинтезу. Выделяющийся в результате кислород, без которого не могут существовать животные, в данном процессе является побочным продуктом. Все грибы и многие прокариоты не способны к синтезу, потому что они не сумели в процессе эволюции обзавестись нужными для этого пигментами.

У растений фотосинтез происходит в хлоропластах. В клетках зеленых, пурпурных и цианобактерий пигменты также прикреплены к мембране. То есть синтез прокариот также происходит в специальных пузырьках, которые называются тилакоидами. Здесь же расположены системы, передающие электроны и ферменты.

Сравнивая фотосинтез прокариот и высших растений, некоторые ученые пришли к выводу, что растительные хлоропласты – не что иное, как потомки зеленых бактерий. Это симбионты, приспособившиеся к жизни внутри более развитых эукариот (клетки таких организмов, в отличие от бактериальных, имеют настоящее ядро).

Существует две разновидности фотосинтеза – оксигенный и аноксигенный. Первый наиболее распространен у растений, цианобактерий и прохлорофитов. Второй происходит у пурпурных, некоторых зеленых и гелиобактерий.

Аноксигенный синтез

Происходит без выделения кислорода в окружающую среду. Он характерен для зеленых и пурпурных бактерий, которые являются своеобразными реликтами, сохранившимися до наших дней с древнейших времен. Фотосинтез всех пурпурных бактерий имеет одну особенность. Они не могут пользоваться водой, как донором водорода (это более характерно для растений) и нуждаются в веществах с более высокими степенями восстановления (органикой, сероводородом или молекулярным водородом). Синтез обеспечивает питание зеленых и пурпурных бактерий и позволяет им заселять пресные и соленые водоемы.

Оксигенный синтез

Происходит с выделением кислорода. Он характерен для цианобактерий. У этих микроорганизмов процесс проходит аналогично фотосинтезу растений. В состав пигментов у цианобактерий входят хлорофилл А, фикобилины и каротиноиды.

Этапы фотосинтеза

Происходит синтез в три этапа.

  1. Фотофизический . Происходит поглощение света с возбуждением пигментов и передачей энергии другим молекулам фотосинтезирующей системы.
  2. Фотохимический . На этом этапе фотосинтеза у зеленых или пурпурных бактерий полученные заряды разделяются и электроны переносятся по цепочке, которая завершается образованием АТФ и НАДФ.
  3. Химический . Происходит без света. Включает в себя биохимические процессы синтеза органических веществ у пурпурных, зеленых и цианобактерий с использованием энергии, накопленной на предыдущих стадиях. Например, это такие процессы, как цикл Кальвина, глюкогенез, завершающиеся образованием сахаров и крахмала.

Пигменты

Фотосинтез бактерий имеет целый ряд особенностей. Например, хлорофиллы в данном случае свои, особенные (хотя у некоторых обнаружены и пигменты, аналогичные тем, которые работают у зеленых растений).

Хлорофиллы, принимающие участие в фотосинтезе зеленых и пурпурных бактерий, сходны по своему строению с теми, которые встречаются у растений. Наиболее распространены хлорофиллы А1, C и D, встречаются также AG, А, B Основной каркас у этих пигментов имеет одинаковое строение, отличия заключаются в боковых ветвях.

С точки зрения физических свойств хлорофиллы растений, пурпурных, зеленых и цианобактерий представляют собой аморфные вещества, хорошо растворимые в спирте, этиловом эфире, бензоле и нерастворимые в воде. Они имеют два максимума поглощения (один в красной, а другой – в синей областях спектра) и обеспечивают максимальную эффективность фотосинтеза у обычных бактерий и цианобактерий.

Молекула хлорофилла состоит из двух частей. Магнийпорфириновое кольцо формирует гидрофильную пластинку, размещенную на поверхности мембраны, а фитол располагается под углом к этой плоскости. Он образует гидрофобный полюс и погружен в мембрану.

У сине-зеленых водорослей обнаружены также фикоцианобилины – желтые пигменты, позволяющие молекулам цианобактерий поглощать тот свет, который не используется зелеными микроорганизмами и хлоропластами растений. Именно потому максимумы поглощения у них находятся в зеленой, желтой и оранжевой частях спектра.

Все виды пурпурных, зеленых и цианобактерий содержат также желтые пигменты – каротиноиды. Их состав уникален для каждого вида прокариот, а пики поглощения света находятся в синей и фиолетовой части спектра. Они позволяют бактериям фотосинтезировать, используя свет промежуточной длины, чем улучшают их продуктивность, могут быть каналами переноса электронов, а также защищают клетку от разрушения активным кислородом. Кроме того, они обеспечивают фототаксис – движение бактерии к источнику света.

Работаю врачом ветеринарной медицины. Увлекаюсь бальными танцами, спортом и йогой. В приоритет ставлю личностное развитие и освоение духовных практик. Любимые темы: ветеринария, биология, строительство, ремонт, путешествия. Табу: юриспруденция, политика, IT-технологии и компьютерные игры.

К цианобактериям относится большая группа организмов, сочетающих прокариотное строение клетки со способностью осуществлять фотосинтез, сопровождающийся выделением O 2 , что свойственно разным группам водорослей и высших растений. Объединение черт, присущих организмам, относящимся к разным царствам или даже надцарствам живой природы, сделало цианобактерии объектом борьбы за принадлежность к низшим растениям (водорослям) или бактериям (прокариотам).

Вопрос о положении цианобактерии (сине-зеленых водорослей) в системе живого мира имеет долгую и противоречивую историю. В течение длительного времени они рассматривались как одна из групп низших растений, поэтому и систематика осуществлялась в соответствии с правилами Международного кодекса ботанической номенклатуры. И только в 60-х гг. XX в., когда было установлено четкое различие между прокариотным и эукариотным типами клеточной организации и на основании этого К. ван Нилем и Р. Стейниером сформулировано определение бактерий как организмов, имеющих прокариотное строение клетки, встал вопрос о пересмотре положения сине-зеленых водорослей в системе живых организмов.

Изучение цитологии клеток сине-зеленых водорослей с помощью современных методов привело к неоспоримому выводу о том, что эти организмы также являются типичными прокариотами. Как следствие этого Р. Стейниером было предложено отказаться от названия "сине-зеленые водоросли" и называть данные организмы "цианобактериями" - термином, отражающим их истинную биологическую природу. Воссоединение цианобактерий с остальными прокариотами поставило исследователей перед необходимостью пересмотра существующей классификации этих организмов и подчинения ее правилам Международного кодекса номенклатуры бактерий.

В течение длительного времени альгологами было описано около 170 родов и больше 1000 видов сине-зеленых водорослей. В настоящее время ведется работа по созданию новой систематики цианобактерий, основанной на изучении чистых культур. Уже получено больше 300 чистых штаммов цианобактерий. Для классификации использованы постоянные морфологические признаки, закономерности развития культуры, особенности клеточной ультраструктуры, величина и нуклеотидная характеристика генома, особенности углеродного и азотного метаболизма и ряд других.

Цианобактерий - морфологически разнообразная группа грамотрицательных эубактерий, включающая одноклеточные, колониальные и многоклеточные формы. У последних единицей структуры служит нить (трихом, или филамент). Нити бывают простые или ветвящиеся. Простые нити состоят из одного ряда клеток (однорядные трихомы), имеющих одинаковые размеры, форму и строение, или клеток, различающихся по этим параметрам. Ветвящиеся трихомы возникают в результате разных причин, в связи с чем различают ложное и истинное ветвление. К истинному ветвлению приводит способность клеток трихома делиться в разных плоскостях, в результате чего возникают многорядные трихомы или однорядные нити с однорядными же боковыми ветвями. Ложное ветвление трихомов не связано с особенностями деления клеток внутри нити, а есть результат прикрепления или соединения разных нитей под углом друг к другу.


В процессе жизненного цикла некоторые цианобактерий формируют дифференцированные единичные клетки или короткие нити, служащие для размножения (баеоциты, гормогонии), выживания в неблагоприятных условиях (споры, или акинеты) или азотфиксации в аэробных условиях (гетероцисты). Более подробная характеристика дифференцированных форм цианобактерий дана ниже при описании их систематики и процесса азотфиксации. Краткая характеристика акинет представлена в гл. 5. Для разных представителей этой группы характерна способность к скользящему движению. Оно свойственно как нитчатым формам (трихомы и/или гормогонии), так и одноклеточным (баеоциты).

Известны разные способы размножения цианобактерий. Деление клеток происходит путем равновеликого бинарного деления, сопровождающегося образованием поперечной перегородки или перетяжки; неравновеликого бинарного деления (почкования); множественного деления (см. рис. 20, А–Г ). Бинарное деление может происходить только в одной плоскости, что у одноклеточных форм приводит к образованию цепочки клеток, а у нитчатых - к удлинению однорядного трихома. Деление в нескольких плоскостях ведет у одноклеточных цианобактерий к формированию скоплений правильной или неправильной формы, а у нитчатых - к возникновению многорядного трихома (если к такому делению способны почти все вегетативные клетки нити) или однорядного трихома с боковыми однорядными ветвями (если способность к делению в разных плоскостях обнаруживают только отдельные клетки нити). Размножение нитчатых форм осуществляется также с помощью обрывков трихома, состоящих из одной или нескольких клеток, у некоторых - также гормогониями, отличающимися по ряду признаков от трихомов, и в результате прорастания акинет в благоприятных условиях.

Начатая работа по классификации цианобактерий в соответствии с правилами Международного кодекса номенклатуры бактерий привела к выделению 5 основных таксономических групп в ранге порядков, различающихся морфологическими признаками (табл. 27). Для характеристики выделенных родов привлечены также данные, полученные при изучении клеточной ультраструктуры, генетического материала, физиолого-биохимических свойств.

К порядку Chroococcales отнесены одноклеточные цианобактерий, существующие в виде одиночных клеток или формирующие колонии (рис. 80). Для большинства представителей этой группы характерно образование чехлов, окружающих каждую клетку и, кроме того, удерживающих вместе группы клеток, т. е. участвующих в формировании колоний. Цианобактерий, клетки которых не образуют чехлов, легко распадаются до одиночных клеток. Размножение осуществляется бинарным делением в одной или нескольких плоскостях, а также почкованием.

Таблица 27. Основные таксономические группы цианобактерий

Единственная энергопреобразующая мембрана Gloeobacter - цитоплазматическая, где локализованы процессы фотосинтеза и дыхания.

Цианобактерии интересны из-за сосредоточения в них разнообразных физиологических возможностей. В недрах этой группы, вероятно, формировался и в целом оформился фотосинтез, основанный на функционировании двух фотосистем, характеризующийся использованием Н2О в качестве экзогенного донора электронов и сопровождающийся выделением О2.

У цианобактерий обнаружена способность к бескислородному фотосинтезу , связанная с отключением II фотосистемы при сохранении активности I фотосистемы ( рис. 75 , В). В этих условиях у них возникает потребность в иных, чем Н2О, экзогенных донорах электронов. В качестве последних цианобактерии могут использовать некоторые восстановленные соединения серы (H2S, Na2S2O3), H2, ряд органических соединений (сахара, кислоты). Так как поток электронов между двумя фотосистемами прерывается, синтез АТФ сопряжен только с циклическим электронным транспортом , связанным с I фотосистемой. Способность к бескислородному фотосинтезу обнаружена у многих цианобактерий из разных групп, но активность фиксации СО2 за счет этого процесса низка, составляя, как правило, несколько процентов от скорости ассимиляции СО2 в условиях функционирования обеих фотосистем. Только некоторые цианобактерии могут расти за счет бескислородного фотосинтеза, например Oscillatoria limnetica , выделенная из озера с высоким содержанием сероводорода. Способность цианобактерий переключаться при изменении условий с одного типа фотосинтеза на другой служит иллюстрацией гибкости их светового метаболизма, имеющей важное экологическое значение.

Хотя подавляющее большинство цианобактерий являются облигатными фототрофами , в природе они часто находятся длительное время в условиях темноты. В темноте у цианобактерий обнаружен активный эндогенный метаболизм, энергетическим субстратом которого служит запасенный на свету гликоген, катаболизируемый по окислительному пентозофосфатному циклу , обеспечивающему полное окисление молекулы глюкозы. На двух этапах этого пути с НАДФ*Н2 водород поступает в дыхательную цепь, конечным акцептором электронов в которой служит О2.

О. limnetica, осуществляющая активный фотосинтез бескислородного типа, оказалась также способной в темноте в анаэробных условиях при наличии в среде серы осуществлять перенос электронов на молекулярную серу, восстанавливая ее до сульфида . Таким образом, анаэробное дыхание также может поставлять цианобактериям в темноте энергию. Однако насколько широко распространена такая способность среди цианобактерий, неизвестно. Не исключено, что она свойственна культурам, осуществляющим бескислородный фотосинтез.

Другой возможный путь получения цианобактериями в темноте энергии - гликолиз . У некоторых видов найдены все ферменты, необходимые для сбраживания глюкозы до молочной кислоты, однако образование последней, а также активности гликолитических ферментов низки. Кроме того, содержание АТФ в клетке в анаэробных условиях резко падает, так что, вероятно, жизнедеятельность цианобактерий только за счет субстратного фосфорилирования поддерживаться не может.

У всех изученных цианобактерий ЦТК из-за отсутствия альфа- кетоглутаратдегидрогеназы "не замкнут" ( рис. 85). В таком виде он не функционирует в качестве пути, ведущего к получению энергии, а выполняет только биосинтетические функции. Способность в той или иной степени использовать органические соединения для биосинтетических целей присуща всем цианобактериям, но только некоторые сахара могут обеспечивать синтез всех клеточных компонентов, являясь единственным или дополнительным к СО2 источником углерода.

Цианобактерии могут ассимилировать некоторые органические кислоты, в первую очередь ацетат и пируват , но всегда только в качестве дополнительного источника углерода. Метаболизирование их связано с функционированием "разорванного" ЦТК и приводит к включению в весьма ограниченное число клеточных компонентов ( рис. 85). В соответствии с особенностями конструктивного метаболизма у цианобактерий отмечают способность к фотогетеротрофии или облигатную привязанность к фотоавтотрофии. В природных условиях цианобактерии часто осуществляют конструктивный метаболизм смешанного (миксотрофного) типа.

Некоторые цианобактерии способны к хемогетеротрофному росту. Набор органических веществ, поддерживающих хемогетеротрофный рост, ограничен несколькими сахарами. Это связывают с функционированием у цианобактерий в качестве основного катаболического пути окислительного пентозофосфатного цикла , исходным субстратом которого служит глюкоза. Поэтому только последняя или сахара, ферментативно легко превращаемые в глюкозу, могут метаболизироваться по этому пути.

Одна из загадок метаболизма цианобактерий - неспособность большинства из них расти в темноте с использованием органических соединений. Невозможность роста за счет субстратов, метаболизируемых в ЦТК , связана с "разорванностью" этого цикла. Но основной путь катаболизма глюкозы - окислительный пентозофосфатный цикл - функционирует у всех изученных цианобактерий. В качестве причин называют неактивность систем транспорта экзогенных сахаров в клетку, а также низкую скорость синтеза АТФ , сопряженного с дыхательным электронным транспортом, вследствие чего количество вырабатываемой в темноте энергии достаточно только для поддержания клеточной жизнедеятельности, но не роста культуры.

Цианобактерий, в группе которых, вероятно, сформировался кислородный фотосинтез , впервые столкнулись с выделением О2 внутри клетки. Помимо создания разнообразных систем защиты от токсических форм кислорода, проявляющихся в устойчивости к высоким концентрациям О2, цианобактерии адаптировались к аэробному способу существования путем использования молекулярного кислорода для получения энергии.

В то же время для ряда цианобактерий показана способность расти на свету в строго анаэробных условиях. Это относится к видам, осуществляющим фотосинтез бескислородного типа , которые в соответствии с принятой классификацией следует отнести к факультативным анаэробам. (Фотосинтез любого типа по своей природе - анаэробный процесс. Это хорошо видно в случае фотосинтеза бескислородного типа и менее очевидно для кислородного фотосинтеза.) Для некоторых цианобактерий показана принципиальная возможность протекания темновых анаэробных процессов ( анаэробное дыхание , молочнокислое брожение), однако низкая активность ставит под сомнение их роль в энергетическом метаболизме цианобактерий. Зависимые и не зависимые от О2 способы получения энергии, обнаруженные в группе цианобактерий, суммированы в

Цианобактерии - изобретатели оксигенного фотосинтеза и создатели кислородной атмосферы Земли - оказались еще более универсальными «биохимическими фабриками», чем ранее считалось. Выяснилось, что они могут совмещать в одной и той же клетке фотосинтез и фиксацию атмосферного азота - процессы, ранее считавшиеся несовместимыми.

Цианобактерии , или, как их раньше называли, синезеленые водоросли, сыграли ключевую роль в эволюции биосферы. Именно они изобрели наиболее эффективный вид фотосинтеза - оксигенный фотосинтез, идущий с выделением кислорода. Более древний аноксигенный фотосинтез, идущий с выделением серы или сульфатов, может происходить только в присутствии восстановленных соединений серы (таких как сероводород) - веществ достаточно дефицитных. Поэтому аноксигенный фотосинтез не мог обеспечить производство органики в количестве, необходимом для развития разнообразных гетеротрофов (потребителей органики), включая животных.

Цианобактерии научились использовать вместо сероводорода обычную воду, что обеспечило им широкое распространение и огромную биомассу. Побочным результатом их деятельности стало насыщение атмосферы кислородом. Без цианобактерий не было бы и растений, ведь растительная клетка - результат симбиоза нефотосинтезирующего одноклеточного организма с цианобактериями. Все растения осуществляют фотосинтез при помощи особых органелл - пластид , которые суть не что иное, как симбиотические цианобактерии. И не ясно еще, кто главный в этом симбиозе. Некоторые биологи говорят, пользуясь метафорическим языком, что растения - всего лишь удобные «домики» для проживания цианобактерий.

Цианобактерии не только создали биосферу «современного типа», но и по сей день продолжают ее поддерживать, производя кислород и синтезируя органику из углекислого газа. Но этим не исчерпывается круг их обязанностей в глобальном биосферном круговороте. Цианобактерии - одни из немногих живых существ, способных фиксировать атмосферный азот, переводя его в доступную для всего живого форму. Азотфиксация абсолютно необходима для существования земной жизни, а осуществлять ее умеют только бактерии, и то далеко не все.

Главная проблема, с которой сталкиваются азотфиксирующие цианобактерии, состоит в том, что ключевые ферменты азотфиксации - нитрогеназы - не могут работать в присутствии кислорода, который выделяется при фотосинтезе. Поэтому у азотфиксирующих цианобактерий выработалось разделение функций между клетками. Эти виды цианобактерий образуют нитевидные колонии, в которых одни клетки занимаются только фотосинтезом и не фиксируют азот, другие - покрытые плотной оболочкой «гетероцисты» - не фотосинтезируют и занимаются только фиксацией азота. Эти два типа клеток, естественно, обмениваются между собой производимой продукцией (органикой и соединениями азота).

До недавнего времени считалось, что совместить фотосинтез и азотфиксацию в одной и той же клетке невозможно. Однако 30 января Артур Гроссман и его коллеги из (Вашингтон, США) сообщили о важном открытии, показывающем, что ученые до сих пор сильно недооценивали метаболические способности цианобактерий. Оказалось, что живущие в горячих источниках цианобактерии рода Synechococcus (к этому роду относятся примитивные, древние, чрезвычайно широко распространенные одноклеточные цианобактерии) ухитряются совмещать в своей единственной клетке оба процесса, разделяя их во времени. Днем они фотосинтезируют, а ночью, когда концентрация кислорода в микробном сообществе (циано-бактериальном мате) резко падает, переключаются на азотфиксацию.

Открытие американских ученых не стало полной неожиданностью. В прочтенных за последние годы геномах нескольких разновидностей Synechococcus были обнаружены гены белков, связанных с азотфиксацией. Не хватало только экспериментальных подтверждений того, что эти гены действительно работают.

Выбор редакции
Начиная с XVII столетия наука выдвинула целый ряд классификаций человеческих рас. Сегодня их количество доходит до 15. Однако в основе...

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13...

Определение 1 Самосознание – это биологически обусловленная способность человека осознавать самого себя.Осознавание личностью себя как...

Изменения и особенности проведения ЕГЭ в 2015 году В 2014 году на федеральном уровне приняты нормативные и процедурные особенности...
Расскажу вам историю про воробья. Один фермер искал себе работника. Проведал про то воробьишка, прилетел к нему наниматься.- Да что от...
Здравствуйте, мои дорогие читатели! А есть ли у вас любимые книги, которые читаются на одном дыхании? Такие, чтобы ни кушать, ни спать...
Европа и мир за ее пределамиС точки зрения глубинного исторического анализа суть эволюционных процессов в Европе в конце XV века состояла...
Наш каталог образцов документов, формы контрактов и должностных инструкций собран в этом разделе ДОГОВОР НА ПРОХОЖДЕНИЕ ПРАКТИКИ СТУДЕНТА...
Тема: Человек, время, история в поэме «По праву памяти» Цель: познакомить учащихся с жизнью и творчеством ­кого; определить жанровые...