Формула оксида теллура. Теллура оксиды. "теллура оксиды" в книгах


Подгруппа кислорода, или халькогенов – 6-я группа периодической системы Д.И. Менделле-ва, включающая следующие элементы: О;S;Se;Te;Po.Номер группы указывает на максимальную валентность элементов, стоящих в этой группе. Общая электронная формула халькогенов: ns2np4– на внешнем валентном уровне у всех элементов имеется 6 электронов, которые редко отдают и чаще принимают 2 недостающих до завершения уровня электрона. Наличие одинакового валентного уровня обуславливает химическое сходство халькогенов. Характерные степени окисления: -1; -2; 0; +1; +2; +4; +6. Кислород проявляет только -1 – в пероксидах; -2 – в оксидах; 0 – в свободном состоянии; +1 и +2 – во фторидах – О2F2, ОF2 т. к. у него нет d-под-уровня и электроны разъединяться не могут, и валентность всегда – 2; S – все, кроме +1 и -1. У серы появляется d-подуровень и электроны с 3р и с 3s в возбужденном состоянии могут разъединиться и уйти на d-подуровень. В невозбужденном состоянии валентность серы – 2 – в SО, 4 – в SО2, 6 – в SО3. Se +2; +4; +6, Te +4; +6, Po +2; -2. Валентности у селена, теллура и полония также 2, 4, 6. Значения степеней окисления отражены в электронном строении элементов: О – 2s22p4; S – 3s23p4; Se – 4s24p4; Te – 5s25p4; Po – 6s26p4. Сверху вниз, с нарастанием внешнего энергетического уровня закономерно изменяются физические и химические свойства халькогенов: радиус атома элементов увеличивается, энергия ионизации и сродства к электрону, а также электроотрицательность уменьшаются; уменьшаются неметаллические свойства, металлические увеличиваются (кислород, сера, селен, теллур – неметаллы), у полония имеется металлический блеск и электропроводимость. Водородные соединения халькогенов соответствуют формуле: H2R: H2О, H2S, H2Sе, H2Те – хальководороды. Водород в этих соединениях может быть замещен на ионы металлов. Степень окисления всех халькогенов в соединении с водородом -2 и валентность тоже 2. При растворении хальководородов в воде образуются соответствующие кислоты. Эти кислоты – восстановители. Сила этих кислот сверху вниз возрастает, т. к. уменьшается энергия связи и способствует активной диссоциации. Кислородные соединения халькогенов отвечают формуле: RО2 и RО3 – кислотные оксиды. При растворении этих оксидов в воде они образуют соответствующие кислоты: Н2RО3 и Н2RO4. В направлении сверху вниз сила этих кислот убывает. Н2RО3 – кислоты-восстановители, Н2RO4 – окислители.

Кислород - самый распространенный элемент на Земле. Он составляет 47,0% от массы земной коры. Его содержание в воздухе оставляет 20,95% по объему или 23,10% по массе. Кислород входит в состав воды, горных пород, многих минералов, солей, содержится в белках, жирах и углеводах, из которых состоят живые организмы.В лабораторных условиях кислород получают: - разложением при нагревании бертолетовой соли (хлората калия) в присутствии катализатора MnO2:2KClO3 = 2KCl+3O2 -разложением при нагревании перманганата калия:2KMnO4=K2MnO4+MnO2+O2 При этом получается очень чистый кислород.можно также получить кислород электролизом водного раствора гидроксида натрия (электроды никелевые);Основным источником промышленного получения кислорода является воздух, который сжижают и затем фракционируют. Вначале выделяется азот (tкип=-195°C), а в жидком состоянии остается почти чистый кислород, так как его температура кипения выше (-183°С). Широко распространен способ получения кислорода, основанный на электролизе воды.В нормальных условиях кислород - газ без цвета, вкуса и запаха, немного тяжелее воздуха. В воде мало растворим (в 1 л воды при 20°С растворяется 31 мл кислорода). При температуре -183°С и давлении 101,325 кПа кислород переходит в жидкое состояние. Жидкий кислород имеет голубоватый цвет и втягивается в магнитное поле.Природный кислород содержит три стабильных изотопа 168O (99,76%), 178О (0,04%) и 188О (0,20%). Искусственным способом получены три нестабильных изотопа - 148О, 158О, 198О.Для завершения внешнего электронного уровня атому кислорода не хватает двух электронов. Энергично принимая их, кислород проявляет степень окисления -2. Однако в соединениях со фтором (OF2 и O2F2) общие электронные пары смещены ко фтору, как к более электроотрицательному элементу. В этом случае степени окисления кислорода соответственно равны +2 и +1, а фтора -1.Молекула кислорода состоит из двух атомов О2. Химическая связь ковалентная неполярная.Кислород образует соединения со всеми химическими элементами, кроме гелия, неона и аргона. С большинством элементов он взаимодействует непосредственно, кроме галогенов, золота и платины. Скорость реакции кислорода как с простыми, так и со сложными веществами зависит от природы веществ, температуры и других условий. Такой активный металл, как цезий, самовозгорается в кислороде воздуха уже при комнатной температуре.С фосфором кислород активно реагирует при нагревании до 60°С, с серой - до 250°С, с водородом - более 300°С, с углеродом (в виде угля и графита) - при 700-800°С.4Р+5О2=2Р2О52Н2+O2=2Н2О S+O2=SO2 С+O2=СO2При горении сложных веществ в избытке кислорода образуются оксиды соответствующих элементов: 2H2S+3O2=2S02+2H2OC2H5OH+3O2=2CO2+3H2OCH4+2O2=CO2+2H20 4FeS2+11O2=2Fe2O3+8SO2 Рассмотренные реакции сопровождаются выделением как теплоты, так и света. Такие процессы с участием кислорода называют горением. Поотносительной электроотрицательности кислород является вторым элементом. Поэтому в химических реакциях как с простыми, так и со сложными веществами он является окислителем, т.к. принимает электроны. Горение, ржавление, гниение и дыхание протекают при участии кислорода. Это окислительно-восстановительные процессы.Для ускорения процессов окисления вместо обыкновенного воздуха применяют кислород или воздух, обогащенный кислородом. Кислород используют для интенсификации окислительных процессов в химической промышленности (производство азотной, серной кислот, искусственного жидкого топлива, смазочных масел и других веществ).Металлургическая промышленность расходует довольно много кислорода. Кислород используют для получения высоких температур. Температура кислородно-ацетиленового пламени достигает 3500°С, кислородно-водородного - 3000°С В медицине кислород применяют для облегчения дыхания. Его используют в кислородных приборах при выполнении работ в трудной для дыхания атмосфере.


Сера - один из немногих химических элементов, которыми уже несколько тысячелетий пользуется человек. Она широко распространена в природе и встречается как в свободном состоянии (самородная сера), так а в соединениях. Минералы, содержащие серу, можно разделить на две группы - сульфиды (колчеданы, блески, обманки) и сульфаты. Самородная сера в больших количествах встречается в Италии (остров Сицилия) и США. В СНГ месторождения самородной серы имеются в Поволжье, в государствах Средней Азии, в Крыму и других районах.К минералам первой группы относятся свинцовый блеск PbS, медный блеск Cu2S, серебряный блеск - Ag2S, цинковая обманка - ZnS, кадмиевая обманка - CdS, пирит или железный колчедан - FeS2, халькопирит - CuFeS2, киноварь - HgS.К минералам второй группы можно отнести гипс CaSO4 2Н2О, мирабилит (глауберова соль) - Na2SO4 10Н2O, кизерит - MgSO4 Н2О.Сера содержится в организмах животных и растений, так как входит в состав белковых молекул. Органические соединения серы содержатся в нефти. Получение 1. При получении серы из природных соединений, например из серного колчедана, его нагревают до высоких температур. Серный колчедан разлагается с образованием сульфида железа (II) и серы: FeS2=FeS+S 2. Серу можно получить окислением сероводорода недостатком кислорода по реакции: 2H2S+O2=2S+2Н2O3. В настоящее время распространено получение серы восстановлением углеродом диоксида серы SO2 - побочного продукта при выплавке металлов из сернистых руд:SO2+С = СO2+S4. Отходящие газы металлургических и коксовых печей содержат смесь диоксида серы и сероводорода. Эту смесь пропускают при высокой температуре над катализатором: H2S+SO2=2H2O+3S Сера представляет собой твердое хрупкое вещество лимонно-желтого цвета. В воде практически нерастворима, но хорошо растворима в сероуглероде CS2 анилине и некоторых других раство-рителях.Плохо проводит тепло и электрический ток. Сера образует несколько аллотропных модификаций:Природная сера состоит из смеси четырех устойчивых изотопов:3216S,3316S,3416S,3616S. Химические свойстваАтом серы, имея незавершенный внешний энергетический уровень, может присоединять два электрона и проявлять степень окисления -2.Такую степень окисления сера проявляет в соединениях с металлами и водородом (Na2S, H2S). При отдаче или оттягивании электронов к атому более электроотрицательного элемента степень окисления серы может быть +2, +4, +6.Нахолоду сера сравнительно инертна, но с повышением температуры ее реакционная способность повышается. 1. С металлами сера проявляет окислительные свойства. При этих реакциях образуются сульфиды (с золотом, платиной и иридием не реагирует): Fe+S=FeS
2. С водородом при нормальных условиях сера не взаимодействует, а при 150-200°С протекает обратимая реакция:H2+S«H2S 3. В реакциях с металлами и с водородом сера ведет себя как типичный окислитель, а в присутствии сильных окислителей проявляет восстановительные свойства.S+3F2=SF6 (с иодом не реагирует)4. Горение серы в кислороде протекает при 280°С, а на воздухе при 360°С. При этом образуется смесь SO2 и SO3:S+O2=SO2 2S+3O2=2SO35. При нагревании без доступа воздуха сера непосредственно соединяется с фосфором, углеродом, проявляя окислительные свойства: 2Р+3S=P2S3 2S + С = CS26. При взаимодействии со сложными веществами сера ведет себя в основном как восстановитель:

7. Сера способна к реакциям диспропорционирования. Так, при кипячении порошка серы с щелочами образуются сульфиты и сульфиды: Серу широко применяют в промышленности и сельском хозяйстве. Около половины ее добычи расходуется для получения серной кислоты. Используют серу для вулканизации каучука: при этом каучук превращается в резину.В виде серного цвета (тонкого порошка) серу применяют для борьбы с болезнями виноградника и хлопчатника. Ее употребляют для получения пороха, спичек, светящихся составов. В медицине приготовляют серные мази для лечения кожных заболеваний.

31 Элементы IV А подгруппы.

Углерод (С), кремний (Si), германий (Ge), олово (Sn), свинец (РЬ) - элементы 4 группы главной подгруппы ПСЭ. На внешнем электронном слое атомы этих элементов имеют 4 электрона: ns2np2. В подгруппе с ростом порядкового номера элемента увеличивается атомный радиус, неметаллические свойства ослабевают, а металлические усиливаются: углерод и кремний - неметаллы, германий, олово, свинец - металлы. Элементы этой подгруппы проявляют как положительную, так и отрицательную степени окисления: -4; +2; +4.

Элемент Электр.формула рад нм ОЭО С.О.
C 2s 2 2p 2 0.077 2.5 -4; 0; +3; +4
14 Si 3s 2 3p 2 0.118 1.74 -4; 0; +3; +4
32 Ge 4s 2 4p 2 0.122 2.02 -4; 0; +3; +4
50 Sn 5s 2 5p 2 0.141 1.72 0; +3; +4
82 Pb 6s 2 6p 2 0.147 1.55 0; +3; +4

--------------------->(металлические свойства возрастают)

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

Химическая формула

Молярная масса TeO, оксид теллура 143.5994 г/моль

Массовые доли элементов в соединении

Использование калькулятора молярной массы

  • Химические формулы нужно вводить с учетом регистра
  • Индексы вводятся как обычные числа
  • Точка на средней линии (знак умножения), применяемая, например, в формулах кристаллогидратов, заменяется обычной точкой.
  • Пример: вместо CuSO₄·5H₂O в конвертере для удобства ввода используется написание CuSO4.5H2O .

Кинематическая вязкость

Калькулятор молярной массы

Моль

Все вещества состоят из атомов и молекул. В химии важно точно измерять массу веществ, вступающих в реакцию и получающихся в результате нее. По определению моль является единицей количества вещества в СИ. Один моль содержит точно 6,02214076×10²³ элементарных частиц. Это значение численно равно константе Авогадро N A , если выражено в единицах моль⁻¹ и называется числом Авогадро. Количество вещества (символ n ) системы является мерой количества структурных элементов. Структурным элементом может быть атом, молекула, ион, электрон или любая частица или группа частиц.

Постоянная Авогадро N A = 6.02214076×10²³ моль⁻¹. Число Авогадро - 6.02214076×10²³.

Другими словами моль - это количество вещества, равное по массе сумме атомных масс атомов и молекул вещества, умноженное на число Авогадро. Единица количества вещества моль является одной из семи основных единиц системы СИ и обозначается моль. Поскольку название единицы и ее условное обозначение совпадают, следует отметить, что условное обозначение не склоняется, в отличие от названия единицы, которую можно склонять по обычным правилам русского языка. Один моль чистого углерода-12 равен точно 12 г.

Молярная масса

Молярная масса - физическое свойство вещества, определяемое как отношение массы этого вещества к количеству вещества в молях. Говоря иначе, это масса одного моля вещества. В системе СИ единицей молярной массы является килограмм/моль (кг/моль). Однако химики привыкли пользоваться более удобной единицей г/моль.

молярная масса = г/моль

Молярная масса элементов и соединений

Соединения - вещества, состоящие из различных атомов, которые химически связаны друг с другом. Например, приведенные ниже вещества, которые можно найти на кухне у любой хозяйки, являются химическими соединениями:

  • соль (хлорид натрия) NaCl
  • сахар (сахароза) C₁₂H₂₂O₁₁
  • уксус (раствор уксусной кислоты) CH₃COOH

Молярная масса химических элементов в граммах на моль численно совпадает с массой атомов элемента, выраженных в атомных единицах массы (или дальтонах). Молярная масса соединений равна сумме молярных масс элементов, из которых состоит соединение, с учетом количества атомов в соединении. Например, молярная масса воды (H₂O) приблизительно равна 1 × 2 + 16 = 18 г/моль.

Молекулярная масса

Молекулярная масса (старое название - молекулярный вес) - это масса молекулы, рассчитанная как сумма масс каждого атома, входящего в состав молекулы, умноженных на количество атомов в этой молекуле. Молекулярная масса представляет собой безразмерную физическую величину, численно равную молярной массе. То есть, молекулярная масса отличается от молярной массы размерностью. Несмотря на то, что молекулярная масса является безразмерной величиной, она все же имеет величину, называемую атомной единицей массы (а.е.м.) или дальтоном (Да), и приблизительно равную массе одного протона или нейтрона. Атомная единица массы также численно равна 1 г/моль.

Расчет молярной массы

Молярную массу рассчитывают так:

  • определяют атомные массы элементов по таблице Менделеева;
  • определяют количество атомов каждого элемента в формуле соединения;
  • определяют молярную массу, складывая атомные массы входящих в соединение элементов, умноженные на их количество.

Например, рассчитаем молярную массу уксусной кислоты

Она состоит из:

  • двух атомов углерода
  • четырех атомов водорода
  • двух атомов кислорода
  • углерод C = 2 × 12,0107 г/моль = 24,0214 г/моль
  • водород H = 4 × 1,00794 г/моль = 4,03176 г/моль
  • кислород O = 2 × 15,9994 г/моль = 31,9988 г/моль
  • молярная масса = 24,0214 + 4,03176 + 31,9988 = 60,05196 g/mol

Наш калькулятор выполняет именно такой расчет. Можно ввести в него формулу уксусной кислоты и проверить что получится.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Теллур – химический элемент относящийся к 16-й группе, находящийся в таблице Менделеева, атомный номер 52 и обозначающийся латинским Те – специальным идентификационным . Элемент относится к металлоидам. Формула теллура 4d10 5s2 5p4.

Теллур – элемент имеющий бело-серебристый оттенок и металлический блеск и хрупкую структуру. При высокой температуре, как и многие металлы, теллур становится пластичным.

Происхождение теллура

Элемент был обнаружен на золотых рудниках, в горах Трансильвании. Человечеству известно не менее ста минералов содержащих теллур. В частности, это серебро, золото, медь и цинк. Существуют различные соединения теллура, к примеру, это некоторые виды охры. В чистом виде, в одном залеже можно обнаружить селен, теллур и серу, что указывает на возможность самородности элемента.

Все упомянутые минералы чаще встречаются в одном месторождении с , серебром, свинцом и висмутом. В промышленных условиях, по большей части теллур выделяется химическим путём из других металлов, несмотря на то, что его основные минералы довольно распространены. В частности, он в достаточном количестве содержится в халькопирите, входящего в состав никелево-медных и медноколчеданных руд.

Дополнительно его можно обнаружить в , молибдените и галените, также он содержится в медных рудах, полиметаллических залежах и свинцово-цинковых залежах. Также эти минералы содержат сульфидные и сурьмяные породы, содержащие кобальт и ртуть.

Преимущественно в промышленности теллур добывается из шлама, который образует электролитическая рафинация меди и свинца. При обработке шлам обжигается, в сгоревших остатках имеется определённое содержание теллура. Для выделения необходимого элемента огарки промываются соляной кислотой.

Чтобы выделить металл из полученного кислотного раствора, сквозь него необходимо пропустить сернистый газ. Полученный таким образом оксид теллура , обрабатывается углём, чтобы получить из него чистый элемент. Для его дальнейшей очистки применяется процедура хлорирования.

При этом образуется тетрахлорид, который необходимо очистить путём дистилляции или ректификации. Далее проводится его гидролизация, а полученный гидроксид теллура восстанавливается водородом.

Применение теллура

Этот металл применяется при изготовлении множества различных (медных, свинцовых, железных), поэтому отрасль металлургии является его основным потребителем. Теллур делает нержавеющую сталь и медь более обрабатываемыми. Также добавление этого элемента в ковкий чугун, придаёт ему положительные свойства серого чугуна.

Улучшаются его литейные качества и обрабатываемость. Он способен заметно улучшить физические свойства свинца, уменьшая отрицательную коррозию от серной кислоты, во время его обработки.

Теллур широко распространён в полупроводниковых устройствах и электронике. В частности, он используется для производства солнечных батарей. Применение теллура открывает широкие перспективы в применении этих передовых технологий. Процент производства подобного оборудования значительно возрос за последние годы. Это привело к заметному росту товарооборота теллура на мировом рынке.

Металл применяется, в том числе в космических технологических разработках, в частности, это сплавы с добавлениями теллура, обладающие уникальными свойствами. Используются они в технологиях обнаружения излучения оставляемых космическими аппаратами.

По этой причине дорогостоящий сплав, в значительной мере востребован в военной промышленности, для слежения за противником в космическом пространстве. Помимо этого смесь селен – теллур входит в состав порошка задержки в капсюлях-детонаторах для взрывных устройств, выпускаемых военными заводами.

Различные соединения теллура используются при производстве соединений полупроводникового характера с многослойной структурой. Многие соединения, включающие в себя теллур, обладают поразительной сверхпроводимостью.

Работает теллур и на благо обывательских нужд. В частности, как подокись металл применяется при производстве компакт-дисков, для создания перезаписываемого тончайшего слоя на них. Также он присутствует в некоторых микросхемах, к примеру, производимых компанией Intel. Теллурид и висмута включён в состав многих термоэлектрических устройств и инфракрасных датчиков.

При окраске керамических изделий также используют этот металл. При изготовлении стекловолокна для информационных коммуникаций (телевидения, интернета и т.д.), участие теллура в производстве кабеля, основывается, на положительном свойстве теллуридов и селенидов увеличивать оптическое преломление при добавлении в стекло.

Вулканизация резины, также подразумевает использование близких металлу веществ – селена или серы, которые могут быть заменены по возможности теллуром. Резина с его добавлением будет демонстрировать гораздо более лучшие качества. Теллур нашёл свою нишу и в медицине – его используют при диагностике дифтерии.

Цена теллура

По потреблению этого редкоземельного металла в мире, Китай стоит на первом месте, Россия на втором, а США на третьем. Общее потребление равняется 400 тоннам металла в год. На продажу теллур обычно идёт в виде порошка, прутков или .

За счёт малых объёмов добычи, в связи с его сравнительно небольшим содержанием в породах, цена на теллур довольна высокая. Приблизительно, если не принимать во внимание постоянные скачки цен на теллур, купить его на мировом рынке можно за 200-300 $ за один килограмм металла. Цена также зависит от степени очистки металла от нежелательных примесей.

Но, несмотря на труднодоступность этого уникального элемента, на него всегда имеется немалый спрос, имеющий постоянные тенденции роста. С каждый годом ширится спектр областей, требующих применения теллура и его соединений.

Проследить за тенденцией роста цен на теллур несложно, сравнив цены в начале 2000 года, когда она равнялась 30$ за 1 кг, и десять лет спустя, когда она дошла до 350$. И несмотря на то, что через год она всё-же упала, имеется серьёзная тенденция роста цен, в связи с падением объёмов производства теллура.

Дело в том, что рынок теллура напрямую зависит от объёма производства , так как теллур является одним из побочных продуктов при её извлечении. На данный момент рынок меди значительно уменьшил свой товарооборот, к тому появились новые технологии её производства, особенности которых значительно повлияют на объём дополнительно получаемого теллура.

Это непременно скажется на его поставках, и естественно расценках. По предположительным данным новый скачок цен ожидается уже через пару лет. Несмотря на то, что у теллура в промышленности имеются определённые аналоги, они не обладают столь ценными свойствами.

Подобная ситуация на мировом рынке, отнюдь не на руку многим производителям, в производстве которых задействован теллур. В частности это производители солнечных батарей, чья продукция в последние годы набирает всё большую популярность.

Открыт Ф.Мюллером в 1782 г. Название элемента происходит от латинского tellus, родительный падеж telluris, Земля (название предложил М.Г. Клапрот, который выделил элемент в виде простого вещества и определил его важнейшие свойства).

Получение:

В природе существует как смесь 8 стабильных изотопов (120, 122-126, 128, 130). Содержание в земной коре 10 -7 %. Основные минералы - алтаит (PbTe), теллуровисмутит (Bi 2 Te 3), тетрадимит (Bi 2 Te 2 S), содержится во многих сульфидных рудах.
Получают из шламов производства меди выщелачиванием раствором NaOH в виде Na 2 TeO 3 , откуда теллур выделяется электролитически. Дальнейшая очистка - сублимацией и зонной плавкой.

Физические свойства:

Компактный теллур серебристо-серое вещество с металлическим блеском, имеющее гексагональную кристаллическую решетку (плотность 6,24 г/см 3 , температура плавления - 450°С, кипения - 990°С). Из растворов осаждается в виде коричневого порошка, в парах состоит из молекул Te 2 .

Химические свойства:

На воздухе при комнатной температуре теллур устойчив, при нагревании реагирует с кислородом. Взаимодействует с галогенами, со могими металлами вступает в реакцию при нагревании.
При нагревании теллур окисляется водяным паром с образованием оксида теллура(II), взаимодействует с концентрированными серной и азотной кислотами. При кипячении в водных растворах щелочей диспропорционирует аналогично сере:
8 Te + 6NаОН = Na 2 TeO 3 + 2Na 2 Te + 3H 2 O
В соединениях проявляет степени окисления -2, +4, +6, реже +2.

Важнейшие соединения:

Оксид теллура(IV), диоксид теллура, TeO 2 , плохо растворим в воде, кислотный оксид, реагирует со щелочами, образуя соли теллуристой кислоты. Применяется в лазерной технике, компонент оптических стекол.
Оксид теллура(VI) , триоксид теллура, TeO 3 , желтое или серое вещество, в воде практически не растворимо, при нагревании разлагается образуя диоксид, реагирует со щелочами. Получают разложением теллуровой кислоты.
Теллуристая кислота , H 2 TeO 3 , малорастворима, склонна к полимеризации, поэтому обычно представляет собой осадок с переменым содержанием воды TeO 2 *nH 2 O. Соли - теллуриты (M 2 TeO 3) и полителлуриты (M 2 Te 2 O 5 и др.), обычно получают спеканием карбонатов с TeO 2 , применяются как компоненты оптических стекол.
Теллуровая кислота , H 6 TeO 6 , белые кристаллы, хорошо растворима в горячей воде. Очень слабая кислота, в растворе образует соли состава MH 5 TeO 6 и M 2 H 4 TeO 6 . При нагревании в запаянной ампуле была получена также метателлуровая кислота H 2 TeO 4 , которая в растворе постепенно превращается в теллуровую. Соли - теллураты . Получают также сплавлением оксида теллура(IV) со щелочами в присутствии окислителей, сплавлением теллуровой кислоты с карбонатом или оксидом металла. Теллураты щелочных металлов растворимы. Применяются как сегнетоэлектрики, ионообменники, компоненты люминисцирующих составов.
Теллуроводород , H 2 Te - ядовитый газ с неприятным запахом, получают гидролизом теллурида алюминия. Сильный восстановитель, в растворе быстро окисляется кислородом до теллура. В водном растворе кислота, более сильная чем серо- и селеноводородная. Соли - теллуриды , получают обычно взаимодействием простых веществ, теллуриды щелочных металлов растворимы. Многие теллуриды p- и d- элементов - полупроводники.
Галогениды . Известны галогениды теллура(II), например TeCl 2 , солеподобные, при нагревании и в растворе диспропорционируют на Te и соединения Te(IV). Тетрагалогениды теллура - твердые вещества, в растворе гидролизуются с образованием теллуристой кислоты, легко образуют комплексные галогениды (например K 2 ). Гексафторид TeF 6 , бесцветный газ, в отличие от гексафторида серы легко гидролизуется, образуя теллуровую кислоту.

Применение:

Компонент полупроводниковых материалов; легирующая добавка к чугуну, сталям, сплавам свинца.
Мировое производство (без СССР) - около 216 т/год (1976).
Теллур и его соединения токсичны. ПДК около 0,01 мг/м 3 .

См. также:
Теллур // Википедия. . Дата обновления: 20.12.2017. URL: http://ru.wikipedia.org/?oldid=89757888 (дата обращения: 25.12.2017).
Открытие элементов и происхождение их названий. Теллур //
URL: http://www.chem.msu.su/rus/history/element/Te.html

Оксид ТеО известен в газовой фазе: 72,4 кДж/моль, 241,7 Дж/(моль

  • - Гемиоксид N2O имеет слабый приятный запах и сладковатый вкус...

    Химическая энциклопедия

  • - Сесквиоксид В 2 О 3 - бесцв. стеклообразное или кристаллич. в-во горьковатого вкуса. Диэлектрик. Стеклообразный имеет слоистую структуру с расстоянием между слоями 0,185 нм...

    Химическая энциклопедия

  • - Сесквиоксид Bi2O3 -единственный устойчивый при нагр. на воздухе В. о. Существует в двух стабильных и двух метастабильных модификациях. Для Bi2O3: плотн. 8,9 г/см 3...

    Химическая энциклопедия

  • - В системе W-O установлен состав четырех оксидов: триоксида WO3; промежут. оксидов W20O58, или WO2 90 , и W18O49, или WO2 72 ; диоксида WO2 . Структура В. о. построена из различно сочлененных октаэдрич. группировок WO6...

    Химическая энциклопедия

  • - соединения хим. элементов с кислородом. Делятся на солеобразующие и несолеобразующие. Солеобразующие бывают основными, кислотными и амфотерными - их гидраты являются соотв...
  • - ТеО2, бесцв. кристаллы. Материал для акустооптич. устройств, компонент оптич. стёкол...

    Естествознание. Энциклопедический словарь

  • - неорганические соединения, в которых КИСЛОРОД связан с другим элементом. Оксиды часто образуются при горении элемента на воздухе или в присутствии кислорода. Так, магний при горении образует оксид магния...

    Научно-технический энциклопедический словарь

  • - оксид СrО, сесквиоксид Сr2О3, диоксид СrО2 и триоксид СrО3. Сr2О3 -тёмно-зелёные кристаллы; компонент футеро-вок металлургич. печей, шлифовальных и притирочных паст; пигмент для стекла и керамики; катализатор ми. процессов...

    Естествознание. Энциклопедический словарь

  • - гемиоксид N2O и монооксид NO , сесквиоксид N203 , диоксид NO2 , оксид N2О5 . N2О и NO -несолеобразующие оксиды, N2О3 с водой даёт азотистую кислоту, N2О5 - азотную, NO2 - их смесь. Все А. о. физиологически активны...

    Естествознание. Энциклопедический словарь

  • - соединения азота с кислородом. Гемиоксид N2O - газ с приятным запахом; хорошо растворим в воде; tкип - 88,5 оС; применяется как анестезирующее средство. Оксид NO - газ, плохо растворимый в воде; tкип - 151,6 оС...

    Большой энциклопедический политехнический словарь

  • - соединения химических элементов с кислородом, в которых он связан только с более электроположительными атомами...

    Большая Советская энциклопедия

  • - : гемиоксид N2O и монооксид NO - сесквиоксид N2O3 , диоксид NO2 , оксид N2O5 . N2O и NO - несолеобразующие оксиды, N2O3 с водой дает азотистую кислоту, N2O5 - азотную, NO2 - их смесь. Все оксиды азота физиологически активны...
  • - соединения химических элементов с кислородом. Делятся на солеобразующие и несолеобразующие...

    Большой энциклопедический словарь

  • - окс"иды, -ов, ед. ч. окс"...

    Русский орфографический словарь

  • - новолатинск., от греч. oxys, кислый. Кислородо-двухлористые соединения...

    Словарь иностранных слов русского языка

  • - сущ., кол-во синонимов: 1 земля...

    Словарь синонимов

"ТЕЛЛУРА ОКСИДЫ" в книгах

Реактор имени «ЛБ» и теллура

Из книги Супербомба для супердержавы. Тайны создания термоядерного оружия автора Губарев Владимир Степанович

Реактор имени «ЛБ» и теллура Реактору имя «АД» дал его научный руководитель А.П. Александров.Проектировался реактор на знаменитом артиллерийском заводе № 92 в Горьком. Именно здесь во время Великой Отечественной были выпущены лучшие пушки, всего - более 100 тысяч. Ну а

Теллус, Теллура

Из книги Мифологический словарь автора Арчер Вадим

Теллус, Теллура (рим.) - «мать-земля» - древнеримская богиня земли и ее производительных сил (Мать Земля, Терра Матер). Т. отождествлялась с Геей, считалась богиней жизни и подземного мира, так как земля принимает в себя мертвых. Как богиню плодородия и покровительницу

Оксиды

Из книги Большая Советская Энциклопедия (ОК) автора БСЭ
Выбор редакции
Начиная с XVII столетия наука выдвинула целый ряд классификаций человеческих рас. Сегодня их количество доходит до 15. Однако в основе...

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13...

Определение 1 Самосознание – это биологически обусловленная способность человека осознавать самого себя.Осознавание личностью себя как...

Изменения и особенности проведения ЕГЭ в 2015 году В 2014 году на федеральном уровне приняты нормативные и процедурные особенности...
Расскажу вам историю про воробья. Один фермер искал себе работника. Проведал про то воробьишка, прилетел к нему наниматься.- Да что от...
Здравствуйте, мои дорогие читатели! А есть ли у вас любимые книги, которые читаются на одном дыхании? Такие, чтобы ни кушать, ни спать...
Европа и мир за ее пределамиС точки зрения глубинного исторического анализа суть эволюционных процессов в Европе в конце XV века состояла...
Наш каталог образцов документов, формы контрактов и должностных инструкций собран в этом разделе ДОГОВОР НА ПРОХОЖДЕНИЕ ПРАКТИКИ СТУДЕНТА...
Тема: Человек, время, история в поэме «По праву памяти» Цель: познакомить учащихся с жизнью и творчеством ­кого; определить жанровые...