Интегралы примеры решения с дробями. Интегрирование дробно-рациональной функции. Метод неопределенных коэффициентов. Интегрирование правильной дробно-рациональной функции


Материал, изложенный в этой теме, опирается на сведения, представленные в теме "Рациональные дроби. Разложение рациональных дробей на элементарные (простейшие) дроби" . Очень советую хотя бы бегло просмотреть эту тему перед тем, как переходить к чтению данного материала. Кроме того, нам будет нужна таблица неопределенных интегралов .

Напомню пару терминов. О их шла речь в соответствующей теме , посему тут ограничусь краткой формулировкой.

Отношение двух многочленов $\frac{P_n(x)}{Q_m(x)}$ называется рациональной функцией или рациональной дробью. Рациональная дробь называется правильной , если $n < m$, т.е. если степень многочлена, стоящего в числителе, меньше степени многочлена, стоящего в знаменателе. В противном случае (если $n ≥ m$) дробь называется неправильной .

Элементарными (простейшими) рациональными дробями именуют рациональные дроби четырёх типов:

  1. $\frac{A}{x-a}$;
  2. $\frac{A}{(x-a)^n}$ ($n=2,3,4, \ldots$);
  3. $\frac{Mx+N}{x^2+px+q}$ ($p^2-4q < 0$);
  4. $\frac{Mx+N}{(x^2+px+q)^n}$ ($p^2-4q < 0$; $n=2,3,4,\ldots$).

Примечание (желательное для более полного понимания текста): показать\скрыть

Зачем нужно условие $p^2-4q < 0$ в дробях третьего и четвертого типов? Рассмотрим квадратное уравнение $x^2+px+q=0$. Дискриминант этого уравнения $D=p^2-4q$. По сути, условие $p^2-4q < 0$ означает, что $D < 0$. Если $D < 0$, то уравнение $x^2+px+q=0$ не имеет действительных корней. Т.е. выражение $x^2+px+q$ неразложимо на множители. Именно эта неразложимость нас и интересует.

Например, для выражения $x^2+5x+10$ получим: $p^2-4q=5^2-4\cdot 10=-15$. Так как $p^2-4q=-15 < 0$, то выражение $x^2+5x+10$ нельзя разложить на множители.

Кстати сказать, для этой проверки вовсе не обязательно, чтобы коэффициент перед $x^2$ равнялся 1. Например, для $5x^2+7x-3=0$ получим: $D=7^2-4\cdot 5 \cdot (-3)=109$. Так как $D > 0$, то выражение $5x^2+7x-3$ разложимо на множители.

Примеры рациональных дробей (правильных и неправильных), а также примеры разложения рациональной дроби на элементарные можно найти . Здесь нас будут интересовать лишь вопросы их интегрирования. Начнём с интегрирования элементарных дробей. Итак, каждый из четырёх типов указанных выше элементарных дробей несложно проинтегрировать, используя формулы, указанные ниже. Напомню, что при интегрировании дробей типа (2) и (4) предполагается $n=2,3,4,\ldots$. Формулы (3) и (4) требуют выполнение условия $p^2-4q < 0$.

\begin{equation} \int \frac{A}{x-a} dx=A\cdot \ln |x-a|+C \end{equation} \begin{equation} \int\frac{A}{(x-a)^n}dx=-\frac{A}{(n-1)(x-a)^{n-1}}+C \end{equation} \begin{equation} \int \frac{Mx+N}{x^2+px+q} dx= \frac{M}{2}\cdot \ln (x^2+px+q)+\frac{2N-Mp}{\sqrt{4q-p^2}}\arctg\frac{2x+p}{\sqrt{4q-p^2}}+C \end{equation}

Для $\int\frac{Mx+N}{(x^2+px+q)^n}dx$ делается замена $t=x+\frac{p}{2}$, после полученный интерал разбивается на два. Первый будет вычисляться с помощью внесения под знак дифференциала, а второй будет иметь вид $I_n=\int\frac{dt}{(t^2+a^2)^n}$. Этот интеграл берётся с помощью рекуррентного соотношения

\begin{equation} I_{n+1}=\frac{1}{2na^2}\frac{t}{(t^2+a^2)^n}+\frac{2n-1}{2na^2}I_n, \; n\in N \end{equation}

Вычисление такого интеграла разобрано в примере №7 (см. третью часть).

Схема вычисления интегралов от рациональных функций (рациональных дробей):

  1. Если подынтегральная дробь является элементарной, то применить формулы (1)-(4).
  2. Если подынтегральная дробь не является элементарной, то представить её в виде суммы элементарных дробей, а затем проинтегрировать, используя формулы (1)-(4).

Указанный выше алгоритм интегрирования рациональных дробей имеет неоспоримое достоинство - он универсален. Т.е. пользуясь этим алгоритмом можно проинтегрировать любую рациональную дробь. Именно поэтому почти все замены переменных в неопределённом интеграле (подстановки Эйлера, Чебышева, универсальная тригонометрическая подстановка) делаются с таким расчётом, чтобы после оной замены получить под интералом рациональную дробь. А к ней уже применить алгоритм. Непосредственное применение этого алгоритма разберём на примерах, предварительно сделав небольшое примечание.

$$ \int\frac{7dx}{x+9}=7\ln|x+9|+C. $$

В принципе, этот интеграл несложно получить без механического применения формулы . Если вынести константу $7$ за знак интеграла и учесть, что $dx=d(x+9)$, то получим:

$$ \int\frac{7dx}{x+9}=7\cdot \int\frac{dx}{x+9}=7\cdot \int\frac{d(x+9)}{x+9}=|u=x+9|=7\cdot\int\frac{du}{u}=7\ln|u|+C=7\ln|x+9|+C. $$

Для детальной информации рекомедую посмотреть тему . Там подробно поясняется, как решаются подобные интегралы. Кстати, формула доказывается теми же преобразованиями, что были применены в этом пункте при решении "вручную".

2) Вновь есть два пути: применить готовую формулу или обойтись без неё. Если применять формулу , то следует учесть, что коэффициент перед $x$ (число 4) придется убрать. Для этого оную четвёрку просто вынесем за скобки:

$$ \int\frac{11dx}{(4x+19)^8}=\int\frac{11dx}{\left(4\left(x+\frac{19}{4}\right)\right)^8}= \int\frac{11dx}{4^8\left(x+\frac{19}{4}\right)^8}=\int\frac{\frac{11}{4^8}dx}{\left(x+\frac{19}{4}\right)^8}. $$

Теперь настал черёд и для применения формулы :

$$ \int\frac{\frac{11}{4^8}dx}{\left(x+\frac{19}{4}\right)^8}=-\frac{\frac{11}{4^8}}{(8-1)\left(x+\frac{19}{4} \right)^{8-1}}+C= -\frac{\frac{11}{4^8}}{7\left(x+\frac{19}{4} \right)^7}+C=-\frac{11}{7\cdot 4^8 \left(x+\frac{19}{4} \right)^7}+C. $$

Можно обойтись и без применения формулы . И даже без вынесения константы $4$ за скобки. Если учесть, что $dx=\frac{1}{4}d(4x+19)$, то получим:

$$ \int\frac{11dx}{(4x+19)^8}=11\int\frac{dx}{(4x+19)^8}=\frac{11}{4}\int\frac{d(4x+19)}{(4x+19)^8}=|u=4x+19|=\\ =\frac{11}{4}\int\frac{du}{u^8}=\frac{11}{4}\int u^{-8}\;du=\frac{11}{4}\cdot\frac{u^{-8+1}}{-8+1}+C=\\ =\frac{11}{4}\cdot\frac{u^{-7}}{-7}+C=-\frac{11}{28}\cdot\frac{1}{u^7}+C=-\frac{11}{28(4x+19)^7}+C. $$

Подробные пояснения по нахождению подобных интегралов даны в теме "Интегрирование подстановкой (внесение под знак дифференциала)" .

3) Нам нужно проинтегрировать дробь $\frac{4x+7}{x^2+10x+34}$. Эта дробь имеет структуру $\frac{Mx+N}{x^2+px+q}$, где $M=4$, $N=7$, $p=10$, $q=34$. Однако чтобы убедиться, что это действительно элементарная дробь третьего типа, нужно проверить выполнение условия $p^2-4q < 0$. Так как $p^2-4q=10^2-4\cdot 34=-16 < 0$, то мы действительно имеем дело с интегрированием элементарной дроби третьего типа. Как и в предыдущих пунктах есть два пути для нахождения $\int\frac{4x+7}{x^2+10x+34}dx$. Первый путь - банально использовать формулу . Подставив в неё $M=4$, $N=7$, $p=10$, $q=34$ получим:

$$ \int\frac{4x+7}{x^2+10x+34}dx = \frac{4}{2}\cdot \ln (x^2+10x+34)+\frac{2\cdot 7-4\cdot 10}{\sqrt{4\cdot 34-10^2}} \arctg\frac{2x+10}{\sqrt{4\cdot 34-10^2}}+C=\\ =2\cdot \ln (x^2+10x+34)+\frac{-26}{\sqrt{36}} \arctg\frac{2x+10}{\sqrt{36}}+C =2\cdot \ln (x^2+10x+34)+\frac{-26}{6} \arctg\frac{2x+10}{6}+C=\\ =2\cdot \ln (x^2+10x+34)-\frac{13}{3} \arctg\frac{x+5}{3}+C. $$

Решим этот же пример, но без использования готовой формулы. Попробуем выделить в числителе производную знаменателя. Что это означает? Мы знаем, что $(x^2+10x+34)"=2x+10$. Именно выражение $2x+10$ нам и предстоит вычленить в числителе. Пока что числитель содержит лишь $4x+7$, но это ненадолго. Применим к числителю такое преобразование:

$$ 4x+7=2\cdot 2x+7=2\cdot (2x+10-10)+7=2\cdot(2x+10)-2\cdot 10+7=2\cdot(2x+10)-13. $$

Теперь в числителе появилось требуемое выражение $2x+10$. И наш интеграл можно переписать в таком виде:

$$ \int\frac{4x+7}{x^2+10x+34} dx= \int\frac{2\cdot(2x+10)-13}{x^2+10x+34}dx. $$

Разобьём подынтегральную дробь на две. Ну и, соответственно, сам интеграл тоже "раздвоим":

$$ \int\frac{2\cdot(2x+10)-13}{x^2+10x+34}dx=\int \left(\frac{2\cdot(2x+10)}{x^2+10x+34}-\frac{13}{x^2+10x+34} \right)\; dx=\\ =\int \frac{2\cdot(2x+10)}{x^2+10x+34}dx-\int\frac{13dx}{x^2+10x+34}=2\cdot\int \frac{(2x+10)dx}{x^2+10x+34}-13\cdot\int\frac{dx}{x^2+10x+34}. $$

Поговорим сперва про первый интеграл, т.е. про $\int \frac{(2x+10)dx}{x^2+10x+34}$. Так как $d(x^2+10x+34)=(x^2+10x+34)"dx=(2x+10)dx$, то в числителе подынтегральной дроби расположен дифференциал знаменателя. Короче говоря, вместо выражения $(2x+10)dx$ запишем $d(x^2+10x+34)$.

Теперь скажем пару слов и о втором интеграле. Выделим в знаменателе полный квадрат: $x^2+10x+34=(x+5)^2+9$. Кроме того, учтём $dx=d(x+5)$. Теперь полученную нами ранее сумму интегралов можно переписать в несколько ином виде:

$$ 2\cdot\int \frac{(2x+10)dx}{x^2+10x+34}-13\cdot\int\frac{dx}{x^2+10x+34} =2\cdot\int \frac{d(x^2+10x+34)}{x^2+10x+34}-13\cdot\int\frac{d(x+5)}{(x+5)^2+9}. $$

Если в первом интеграле сделать замену $u=x^2+10x+34$, то он примет вид $\int\frac{du}{u}$ и возьмётся простым применением второй формулы из . Что же касается второго интеграла, то для него осуществима замена $u=x+5$, после которой он примет вид $\int\frac{du}{u^2+9}$. Это чистейшей воды одиннадцатая формула из таблицы неопределенных интегралов . Итак, возвращаясь к сумме интегралов, будем иметь:

$$ 2\cdot\int \frac{d(x^2+10x+34)}{x^2+10x+34}-13\cdot\int\frac{d(x+5)}{(x+5)^2+9} =2\cdot\ln(x^2+10x+34)-\frac{13}{3}\arctg\frac{x+5}{3}+C. $$

Мы получили тот же ответ, что и при применении формулы , что, собственно говоря, неудивительно. Вообще, формула доказывается теми же методами, кои мы применяли для нахождения данного интеграла. Полагаю, что у внимательного читателя тут может возникнуть один вопрос, посему сформулирую его:

Вопрос №1

Если к интегралу $\int \frac{d(x^2+10x+34)}{x^2+10x+34}$ применять вторую формулу из таблицы неопределенных интегралов , то мы получим следующее:

$$ \int \frac{d(x^2+10x+34)}{x^2+10x+34}=|u=x^2+10x+34|=\int\frac{du}{u}=\ln|u|+C=\ln|x^2+10x+34|+C. $$

Почему же в решении отсутствовал модуль?

Ответ на вопрос №1

Вопрос совершенно закономерный. Модуль отсутствовал лишь потому, что выражение $x^2+10x+34$ при любом $x\in R$ больше нуля. Это совершенно несложно показать несколькими путями. Например, так как $x^2+10x+34=(x+5)^2+9$ и $(x+5)^2 ≥ 0$, то $(x+5)^2+9 > 0$. Можно рассудить и по-иному, не привлекая выделение полного квадрата. Так как $10^2-4\cdot 34=-16 < 0$, то $x^2+10x+34 > 0$ при любом $x\in R$ (если эта логическая цепочка вызывает удивление, советую посмотреть графический метод решения квадратных неравенств). В любом случае, так как $x^2+10x+34 > 0$, то $|x^2+10x+34|=x^2+10x+34$, т.е. вместо модуля можно использовать обычные скобки.

Все пункты примера №1 решены, осталось лишь записать ответ.

Ответ :

  1. $\int\frac{7dx}{x+9}=7\ln|x+9|+C$;
  2. $\int\frac{11dx}{(4x+19)^8}=-\frac{11}{28(4x+19)^7}+C$;
  3. $\int\frac{4x+7}{x^2+10x+34}dx=2\cdot\ln(x^2+10x+34)-\frac{13}{3}\arctg\frac{x+5}{3}+C$.

Пример №2

Найти интеграл $\int\frac{7x+12}{3x^2-5x-2}dx$.

На первый взгляд подынтегральая дробь $\frac{7x+12}{3x^2-5x-2}$ очень похожа на элементарную дробь третьего типа, т.е. на $\frac{Mx+N}{x^2+px+q}$. Кажется, что единcтвенное отличие - это коэффициент $3$ перед $x^2$, но ведь коэффициент и убрать недолго (за скобки вынести). Однако это сходство кажущееся. Для дроби $\frac{Mx+N}{x^2+px+q}$ обязательным является условие $p^2-4q < 0$, которое гарантирует, что знаменатель $x^2+px+q$ нельзя разложить на множители. Проверим, как обстоит дело с разложением на множители у знаменателя нашей дроби, т.е. у многочлена $3x^2-5x-2$.

У нас коэффициент перед $x^2$ не равен единице, посему проверить условие $p^2-4q < 0$ напрямую мы не можем. Однако тут нужно вспомнить, откуда взялось выражение $p^2-4q$. Это всего лишь дискриминант квадратного уравнения $x^2+px+q=0$. Если дискриминант меньше нуля, то выражение $x^2+px+q$ на множители не разложишь. Вычислим дискриминант многочлена $3x^2-5x-2$, расположенного в знаменателе нашей дроби: $D=(-5)^2-4\cdot 3\cdot(-2)=49$. Итак, $D > 0$, посему выражение $3x^2-5x-2$ можно разложить на множители. А это означает, что дробь $\frac{7x+12}{3x^2-5x-2}$ не является элементаной дробью третьего типа, и применять к интегралу $\int\frac{7x+12}{3x^2-5x-2}dx$ формулу нельзя.

Ну что же, если заданная рациональная дробь не является элементарной, то её нужно представить в виде суммы элементарных дробей, а затем проинтегрировать. Короче говоря, след воспользоваться . Как разложить рациональную дробь на элементарные подробно написано . Начнём с того, что разложим на множители знаменатель:

$$ 3x^2-5x-2=0;\\ \begin{aligned} & D=(-5)^2-4\cdot 3\cdot(-2)=49;\\ & x_1=\frac{-(-5)-\sqrt{49}}{2\cdot 3}=\frac{5-7}{6}=\frac{-2}{6}=-\frac{1}{3};\\ & x_2=\frac{-(-5)+\sqrt{49}}{2\cdot 3}=\frac{5+7}{6}=\frac{12}{6}=2.\\ \end{aligned}\\ 3x^2-5x-2=3\cdot\left(x-\left(-\frac{1}{3}\right)\right)\cdot (x-2)=3\cdot\left(x+\frac{1}{3}\right)(x-2). $$

Подынтеральную дробь представим в таком виде:

$$ \frac{7x+12}{3x^2-5x-2}=\frac{7x+12}{3\cdot\left(x+\frac{1}{3}\right)(x-2)}=\frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)}. $$

Теперь разложим дробь $\frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)}$ на элементарные:

$$ \frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)} =\frac{A}{x+\frac{1}{3}}+\frac{B}{x-2}=\frac{A(x-2)+B\left(x+\frac{1}{3}\right)}{\left(x+\frac{1}{3}\right)(x-2)};\\ \frac{7}{3}x+4=A(x-2)+B\left(x+\frac{1}{3}\right). $$

Чтобы найти коэффициенты $A$ и $B$ есть два стандартных пути: метод неопределённых коэффициентов и метод подстановки частных значений. Применим метод подстановки частных значений, подставляя $x=2$, а затем $x=-\frac{1}{3}$:

$$ \frac{7}{3}x+4=A(x-2)+B\left(x+\frac{1}{3}\right).\\ x=2;\; \frac{7}{3}\cdot 2+4=A(2-2)+B\left(2+\frac{1}{3}\right); \; \frac{26}{3}=\frac{7}{3}B;\; B=\frac{26}{7}.\\ x=-\frac{1}{3};\; \frac{7}{3}\cdot \left(-\frac{1}{3} \right)+4=A\left(-\frac{1}{3}-2\right)+B\left(-\frac{1}{3}+\frac{1}{3}\right); \; \frac{29}{9}=-\frac{7}{3}A;\; A=-\frac{29\cdot 3}{9\cdot 7}=-\frac{29}{21}.\\ $$

Так как коэффициенты найдены, осталось лишь записать готовое разложение:

$$ \frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)}=\frac{-\frac{29}{21}}{x+\frac{1}{3}}+\frac{\frac{26}{7}}{x-2}. $$

В принципе, можно такую запись оставить, но мне по душе более аккуратный вариант:

$$ \frac{\frac{7}{3}x+4}{\left(x+\frac{1}{3}\right)(x-2)}=-\frac{29}{21}\cdot\frac{1}{x+\frac{1}{3}}+\frac{26}{7}\cdot\frac{1}{x-2}. $$

Возвращаясь к исходному интегралу, подставим в него полученное разложение. Затем разобьём интеграл на два, и к каждому применим формулу . Константы я предпочитаю сразу выносить за знак интеграла:

$$ \int\frac{7x+12}{3x^2-5x-2}dx =\int\left(-\frac{29}{21}\cdot\frac{1}{x+\frac{1}{3}}+\frac{26}{7}\cdot\frac{1}{x-2}\right)dx=\\ =\int\left(-\frac{29}{21}\cdot\frac{1}{x+\frac{1}{3}}\right)dx+\int\left(\frac{26}{7}\cdot\frac{1}{x-2}\right)dx =-\frac{29}{21}\cdot\int\frac{dx}{x+\frac{1}{3}}+\frac{26}{7}\cdot\int\frac{dx}{x-2}dx=\\ =-\frac{29}{21}\cdot\ln\left|x+\frac{1}{3}\right|+\frac{26}{7}\cdot\ln|x-2|+C. $$

Ответ : $\int\frac{7x+12}{3x^2-5x-2}dx=-\frac{29}{21}\cdot\ln\left|x+\frac{1}{3}\right|+\frac{26}{7}\cdot\ln|x-2|+C$.

Пример №3

Найти интеграл $\int\frac{x^2-38x+157}{(x-1)(x+4)(x-9)}dx$.

Нам нужно проинтегрировать дробь $\frac{x^2-38x+157}{(x-1)(x+4)(x-9)}$. В числителе расположен многочлен второй степени, а в знаменателе - многочлен третьей степени. Так как степень многочлена в числителе меньше степени многочлена в знаменателе, т.е. $2 < 3$, то подынтегральная дробь является правильной. Разложение этой дроби на элементарные (простейшие) было получено в примере №3 на странице, посвящённой разложению рациональных дробей на элементарные. Полученное разложение таково:

$$ \frac{x^2-38x+157}{(x-1)(x+4)(x-9)}=-\frac{3}{x-1}+\frac{5}{x+4}-\frac{1}{x-9}. $$

Нам останется только разбить заданный интеграл на три, и к каждому применить формулу . Константы я предпочитаю сразу выносить за знак интеграла:

$$ \int\frac{x^2-38x+157}{(x-1)(x+4)(x-9)}dx=\int\left(-\frac{3}{x-1}+\frac{5}{x+4}-\frac{1}{x-9} \right)dx=\\=-3\cdot\int\frac{dx}{x-1}+ 5\cdot\int\frac{dx}{x+4}-\int\frac{dx}{x-9}=-3\ln|x-1|+5\ln|x+4|-\ln|x-9|+C. $$

Ответ : $\int\frac{x^2-38x+157}{(x-1)(x+4)(x-9)}dx=-3\ln|x-1|+5\ln|x+4|-\ln|x-9|+C$.

Продолжение разбора примеров этой темы расположено во второй части.

Приводится вывод формул для вычисления интегралов от простейших, элементарных, дробей четырех типов. Более сложные интегралы, от дробей четвертого типа, вычисляются с помощью формулы приведения. Рассмотрен пример интегрирования дроби четвертого типа.

Содержание

См. также: Таблица неопределенных интегралов
Методы вычисления неопределенных интегралов

Как известно, любую рациональную функцию от некоторой переменной x можно разложить на многочлен и простейшие, элементарные, дроби. Имеется четыре типа простейших дробей:
1) ;
2) ;
3) ;
4) .
Здесь a, A, B, b, c - действительные числа. Уравнение x 2 + bx + c = 0 не имеет действительных корней.

Интегрирование дробей первых двух типов

Интегрирование первых двух дробей выполняется с помощью следующих формул из таблицы интегралов :
,
, n ≠ - 1 .

1. Интегрирование дроби первого типа

Дробь первого типа подстановкой t = x - a приводится к табличному интегралу:
.

2. Интегрирование дроби второго типа

Дробь второго типа приводится к табличному интегралу той же подстановкой t = x - a :

.

3. Интегрирование дроби третьего типа

Рассмотрим интеграл от дроби третьего типа:
.
Будем вычислять его в два приема.

3.1. Шаг 1. Выделим в числителе производную знаменателя

Выделим в числителе дроби производную от знаменателя. Обозначим: u = x 2 + bx + c . Дифференцируем: u′ = 2 x + b . Тогда
;
.
Но
.
Мы опустили знак модуля, поскольку .

Тогда:
,
где
.

3.2. Шаг 2. Вычисляем интеграл с A = 0, B=1

Теперь вычисляем оставшийся интеграл:
.

Приводим знаменатель дроби к сумме квадратов:
,
где .
Мы считаем, что уравнение x 2 + bx + c = 0 не имеет корней. Поэтому .

Сделаем подстановку
,
.
.

Итак,
.

Тем самым мы нашли интеграл от дроби третьего типа:

,
где .

4. Интегрирование дроби четвертого типа

И наконец, рассмотрим интеграл от дроби четвертого типа:
.
Вычисляем его в три приема.

4.1) Выделяем в числителе производную знаменателя:
.

4.2) Вычисляем интеграл
.

4.3) Вычисляем интегралы
,
используя формулу приведения:
.

4.1. Шаг 1. Выделение в числителе производной знаменателя

Выделим в числителе производную знаменателя, как мы это делали в . Обозначим u = x 2 + bx + c . Дифференцируем: u′ = 2 x + b . Тогда
.

.
Но
.

Окончательно имеем:
.

4.2. Шаг 2. Вычисление интеграла с n = 1

Вычисляем интеграл
.
Его вычисление изложено в .

4.3. Шаг 3. Вывод формулы приведения

Теперь рассмотрим интеграл
.

Приводим квадратный трехчлен к сумме квадратов:
.
Здесь .
Делаем подстановку.
.
.

Выполняем преобразования и интегрируем по частям.




.

Умножим на 2(n - 1) :
.
Возвращаемся к x и I n .
,
;
;
.

Итак, для I n мы получили формулу приведения:
.
Последовательно применяя эту формулу, мы сведем интеграл I n к I 1 .

Пример

Вычислить интеграл

1. Выделим в числителе производную знаменателя.
;
;


.
Здесь
.

2. Вычисляем интеграл от самой простой дроби.

.

3. Применяем формулу приведения:

для интеграла .
В нашем случае b = 1 , c = 1 , 4 c - b 2 = 3 . Выписываем эту формулу для n = 2 и n = 3 :
;
.
Отсюда

.

Окончательно имеем:

.
Находим коэффициент при .
.

См. также:

Дробь называется правильной , если старшая степень числителя меньше старшей степени знаменателя. Интеграл правильной рациональной дроби имеет вид:

$$ \int \frac{mx+n}{ax^2+bx+c}dx $$

Формула на интегрирование рациональных дробей зависит от корней многочлена в знаменателе. Если многочлен $ ax^2+bx+c $ имеет:

  1. Только комплексные корни, то из него необходимо выделить полный квадрат: $$ \int \frac{mx+n}{ax^2+bx+c} dx = \int \frac{mx+n}{x^2 \pm a^2} $$
  2. Различные действительные корни $ x_1 $ и $ x_2 $, то нужно выполнить разложение интеграла и найти неопределенные коэффициенты $ A $ и $ B $: $$ \int \frac{mx+n}{ax^2+bx+c} dx = \int \frac{A}{x-x_1} dx + \int \frac{B}{x-x_2} dx $$
  3. Один кратный корень $ x_1 $, то выполняем разложение интеграла и находим неопределенные коэффициенты $ A $ и $ B $ для такой формулы: $$ \int \frac{mx+n}{ax^2+bx+c} dx = \int \frac{A}{(x-x_1)^2}dx + \int \frac{B}{x-x_1} dx $$

Если дробь является неправильной , то есть старшая степень в числителе больше либо равна старшей степени знаменателя, то сначала её нужно привести к правильному виду путём деления многочлена из числителя на многочлен из знаменателя. В данном случае формула интегрирования рациональной дроби имеет вид:

$$ \int \frac{P(x)}{ax^2+bx+c}dx = \int Q(x) dx + \int \frac{mx+n}{ax^2+bx+c}dx $$

Примеры решений

Пример 1
Найти интеграл рациональной дроби: $$ \int \frac{dx}{x^2-10x+16} $$
Решение

Дробь является правильной и многочлен имеет только комплексные корни. Поэтому выделим полный квадрат:

$$ \int \frac{dx}{x^2-10x+16} = \int \frac{dx}{x^2-2\cdot 5 x+ 5^2 - 9} = $$

Сворачиваем полный квадрат и подводим под знак дифференциала $ x-5 $:

$$ = \int \frac{dx}{(x-5)^2 - 9} = \int \frac{d(x-5)}{(x-5)^2-9} = $$

Пользуясь таблицей интегралов получаем:

$$ = \frac{1}{2 \cdot 3} \ln \bigg | \frac{x-5 - 3}{x-5 + 3} \bigg | + C = \frac{1}{6} \ln \bigg |\frac{x-8}{x-2} \bigg | + C $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \int \frac{dx}{x^2-10x+16} = \frac{1}{6} \ln \bigg |\frac{x-8}{x-2} \bigg | + C $$
Пример 2
Выполнить интегрирование рациональных дробей: $$ \int \frac{x+2}{x^2+5x-6} dx $$
Решение

Решим квадратное уравнение: $$ x^2+5x-6 = 0 $$

$$ x_{12} = \frac{-5\pm \sqrt{25-4\cdot 1 \cdot (-6)}}{2} = \frac{-5 \pm 7}{2} $$

Записываем корни:

$$ x_1 = \frac{-5-7}{2} = -6; x_2 = \frac{-5+7}{2} = 1 $$

С учётом полученных корней, преобразуем интеграл:

$$ \int \frac{x+2}{x^2+5x-6} dx = \int \frac{x+2}{(x-1)(x+6)} dx = $$

Выполняем разложение рациональной дроби:

$$ \frac{x+2}{(x-1)(x+6)} = \frac{A}{x-1} + \frac{B}{x+6} = \frac{A(x-6)+B(x-1)}{(x-1)(x+6)} $$

Приравниваем числители и находим коэффициенты $ A $ и $ B $:

$$ A(x+6)+B(x-1)=x+2 $$

$$ Ax + 6A + Bx - B = x + 2 $$

$$ \begin{cases} A + B = 1 \\ 6A - B = 2 \end{cases} $$

$$ \begin{cases} A = \frac{3}{7} \\ B = \frac{4}{7} \end{cases} $$

Подставляем в интеграл найденные коэффициенты и решаем его:

$$ \int \frac{x+2}{(x-1)(x+6)}dx = \int \frac{\frac{3}{7}}{x-1} dx + \int \frac{\frac{4}{7}}{x+6} dx = $$

$$ = \frac{3}{7} \int \frac{dx}{x-1} + \frac{4}{7} \int \frac{dx}{x+6} = \frac{3}{7} \ln |x-1| + \frac{4}{7} \ln |x+6| + C $$

Ответ
$$ \int \frac{x+2}{x^2+5x-6} dx = \frac{3}{7} \ln |x-1| + \frac{4}{7} \ln |x+6| + C $$

Задача нахождения неопределенного интеграла дробно рациональной функции сводится к интегрированию простейших дробей. Поэтому рекомендуем для начала ознакомиться с разделом теории разложение дроби на простейшие.

Пример.

Решение.

Так как степень числителя подынтегральной функции равна степени знаменателя, то для начала выделяем целую часть, проводя деление столбиком многочлена на многочлен:

Поэтому, .

Разложение полученной правильной рациональной дроби на простейшие дроби имеет вид. Следовательно,

Полученный интеграл представляет собой интеграл простейшей дроби третьего типа. Забегая немного вперед, отметим, что взять его можно методом подведения под знак дифференциала.

Так как , то. Поэтому

Следовательно,

Теперь перейдем к описанию методов интегрирования простейших дробей каждого из четырех типов.

Интегрирование простейших дробей первого типа

Для решения этой задачи идеально подходит метод непосредственного интегрирования:

Пример.

Решение.

Найдем неопределенный интеграл , используя свойства первообразной, таблицу первообразных и правило интегрирования.

К началу страницы

Интегрирование простейших дробей второго типа

Для решения этой задачи также подходит метод непосредственного интегрирования:

Пример.

Решение.

К началу страницы

Интегрирование простейших дробей третьего типа

Для начала представляем неопределенный интеграл в виде суммы:

Первый интеграл берем методом подведения под знак дифференциала:

Поэтому,

У полученного интеграла преобразуем знаменатель:

Следовательно,

Формула интегрирования простейших дробей третьего типа принимает вид:

Пример.

Найдите неопределенный интеграл .

Решение.

Используем полученную формулу:

Если бы у нас не было этой формулы, то как бы мы поступили:

9. Интегрирование простейших дробей четвертого типа

Первый шаг – подводим под знак дифференциала:

Второй шаг – нахождение интеграла вида . Интегралы подобного вида находятся с использованием рекуррентных формул. (Смотрите разделинтегрирование с использованием рекуррентных формул). Для нашего случая подходит следующая рекуррентная формула:

Пример.

Найдите неопределенный интеграл

Решение.

Для данного вида подынтегральной функции используем метод подстановки. Введем новую переменную (смотрите раздел интегрирование иррациональных функций):

После подстановки имеем:

Пришли к нахождению интеграла дроби четвертого типа. В нашем случае имеем коэффициенты М = 0, р = 0, q = 1, N = 1 и n = 3 . Применяем рекуррентную формулу:

После обратной замены получаем результат:

10. Интегрирование тригонометрических функций.

Множество задач сводится к нахождению интегралов трансцендентных функций, содержащих тригонометрические функции. В данной статье сгруппируем наиболее часто встречающиеся виды подынтегральных функций и на примерах рассмотрим методы их интегрирования.

    Начнем с интегрирования синуса, косинуса, тангенса и котангенса.

Из таблицы первообразных сразу заметим, что и.

Метод подведения под знак дифференциалапозволяет вычислить неопределенные интегралы функций тангенса и котангенса:

К началу страницы

Разберем первый случай, второй абсолютно аналогичен.

Воспользуемся методом подстановки:

Пришли к задаче интегрирования иррациональной функции. Здесь нам также поможет метод подстановки:

Осталось провести обратную замену иt = sinx :

К началу страницы

Подробно о принципах их нахождении можете ознакомиться в разделеинтегрирование с использованием рекуррентных формул. Если изучите вывод этих формул, то без особого труда сможете брать интегралы вида, гдеm и n – натуральные числа.

К началу страницы

К началу страницы

    Максимум творчества приходится вкладывать, когда подынтегральная функция содержит тригонометрические функции с различными аргументами.

Здесь на помощь приходят основные формулы тригонометрии. Так что выписывайте их на отдельный листочек и держите перед глазами.

Пример.

Найти множество первообразных функции .

Решение.

Формулы понижения степени дают и.

Поэтому

Знаменатель представляет собой формулу синуса суммы, следовательно,

Приходим к сумме трех интегралов.

К началу страницы

    Подынтегральные выражения, содержащие тригонометрические функции, иногда можно свести к дробно рациональным выражениям, используя стандартную тригонометрическую подстановку.

Выпишем тригонометрические формулы, выражающие синус, косинус, тангенс через тангенс половинного аргумента:

При интегрировании нам также понадобится выражение дифференциала dx через тангенс половинного угла.

Так как , то

То есть, , где.

Пример.

Найти неопределенный интеграл .

Решение.

Применим стандартную тригонометрическую подстановку:

Таким образом, .

Разложение на простейшие дробиподынтегральной функции приводит нас к сумме двух интегралов:

Осталось провести обратную замену :

11. Рекуррентные формулы – это формулы, выражающие n -ый член последовательности через предыдущие члены. При нахождении интегралов они не редко используются.

Мы не ставим целью перечислить все рекуррентные формулы, а хотим дать принцип их получения. Вывод этих формул основан на преобразовании подынтегральной функции и применении метода интегрирования по частям.

К примеру, неопределенный интеграл можно взять, используя рекуррентную формулу.

Вывод формулы :

Используя формулы тригонометрии, можно записать:

Полученный интеграл найдем методом интегрирования по частям. В качестве функции u(x) возьмем cosx , следовательно, .

Поэтому,

Возвращаемся к исходному интегралу:

То есть,

Что и требовалось показать.

Аналогично выводятся следующие рекуррентные формулы:

Пример.

Найти неопределенный интеграл .

Решение.

Используем рекуррентную формулу из четвертого пункта (в нашем примере n = 3 ):

Так как из таблицы первообразных имеем , то

Как я уже отмечал, в интегральном исчислении нет удобной формулы для интегрирования дроби . И поэтому наблюдается грустная тенденция: чем «навороченнее» дробь, тем труднее найти от нее интеграл. В этой связи приходится прибегать к различным хитростям, о которых я сейчас и расскажу. Подготовленные читатели могут сразу воспользоваться оглавлением :

  • Метод подведения под знак дифференциала для простейших дробей

Метод искусственного преобразования числителя

Пример 1

Кстати, рассмотренный интеграл можно решить и методом замены переменной, обозначая , но запись решения получится значительно длиннее.

Пример 2

Найти неопределенный интеграл. Выполнить проверку.

Это пример для самостоятельного решения. Следует заметить, что здесь метод замены переменной уже не пройдёт.

Внимание, важно! Примеры №№1,2 являются типовыми и встречаются часто . В том числе, подобные интегралы нередко возникают в ходе решения других интегралов, в частности, при интегрировании иррациональных функций (корней).

Рассмотренный приём работает и в случае, если старшая степень числителя, больше старшей степени знаменателя .

Пример 3

Найти неопределенный интеграл. Выполнить проверку.

Начинаем подбирать числитель.

Алгоритм подбора числителя примерно такой:

1) В числителе мне нужно организовать , но там . Что делать? Заключаю в скобки и умножаю на : .

2) Теперь пробую раскрыть эти скобки, что получится? . Хмм… уже лучше, но никакой двойки при изначально в числителе нет. Что делать? Нужно домножить на :

3) Снова раскрываю скобки: . А вот и первый успех! Нужный получился! Но проблема в том, что появилось лишнее слагаемое . Что делать? Чтобы выражение не изменилось, я обязан прибавить к своей конструкции это же :
. Жить стало легче. А нельзя ли еще раз в числителе организовать ?

4) Можно. Пробуем: . Раскрываем скобки второго слагаемого:
. Простите, но у меня вообще-то было на предыдущем шаге , а не . Что делать? Нужно домножить второе слагаемое на :

5) Снова для проверки раскрываю скобки во втором слагаемом:
. Вот теперь нормально: получено из окончательной конструкции пункта 3! Но опять есть маленькое «но», появилось лишнее слагаемое , значит, я обязан прибавить к своему выражению :

Если всё выполнено правильно, то при раскрытии всех скобок у нас должен получиться исходный числитель подынтегральной функции. Проверяем:
Гуд.

Таким образом:

Готово. В последнем слагаемом я применил метод подведения функции под дифференциал.

Если найти производную от ответа и привести выражение к общему знаменателю, то у нас получится в точности исходная подынтегральная функция . Рассмотренный метод разложения в сумму – есть не что иное, как обратное действие к приведению выражения к общему знаменателю.

Алгоритм подбора числителя в подобных примерах лучше выполнять на черновике. При некоторых навыках будет получаться и мысленно. Припоминаю рекордный случай, когда я выполнял подбор для 11-й степени, и разложение числителя заняло почти две строчки Вёрда.

Пример 4

Найти неопределенный интеграл. Выполнить проверку.

Это пример для самостоятельного решения.

Метод подведения под знак дифференциала для простейших дробей

Переходим к рассмотрению следующего типа дробей.
, , , (коэффициенты и не равны нулю).

На самом деле пара случаев с арксинусом и арктангенсом уже проскальзывала на уроке Метод замены переменной в неопределенном интеграле . Решаются такие примеры способом подведения функции под знак дифференциала и дальнейшим интегрированием с помощью таблицы. Вот еще типовые примеры с длинным и высоким логарифмом:

Пример 5

Пример 6

Тут целесообразно взять в руки таблицу интегралов и проследить, по каким формулам и как осуществляется превращение. Обратите внимание, как и зачем выделяются квадраты в данных примерах. В частности, в примере 6 сначала необходимо представить знаменатель в виде , потом подвести под знак дифференциала. А сделать это всё нужно для того, чтобы воспользоваться стандартной табличной формулой .

Да что смотреть, попробуйте самостоятельно решить примеры №№7,8, тем более, они достаточно короткие:

Пример 7

Пример 8

Найти неопределенный интеграл:

Если Вам удастся выполнить еще и проверку данных примеров, то большой респект – Ваши навыки дифференцирования на высоте.

Метод выделения полного квадрата

Интегралы вида , (коэффициенты и не равны нулю) решаются методом выделения полного квадрата , который уже фигурировал на уроке Геометрические преобразования графиков .

На самом деле такие интегралы сводятся к одному из четырех табличных интегралов, которые мы только что рассмотрели. А достигается это с помощью знакомых формул сокращенного умножения:

Формулы применяются именно в таком направлении, то есть, идея метода состоит в том, чтобы в знаменателе искусственно организовать выражения либо , а затем преобразовать их соответственно в либо .

Пример 9

Найти неопределенный интеграл

Это простейший пример, в котором при слагаемом – единичный коэффициент (а не какое-нибудь число или минус).

Смотрим на знаменатель, здесь всё дело явно сведется к случаю . Начинаем преобразование знаменателя:

Очевидно, что нужно прибавлять 4. И, чтобы выражение не изменилось – эту же четверку и вычитать:

Теперь можно применить формулу :

После того, как преобразование закончено ВСЕГДА желательно выполнить обратный ход: , всё нормально, ошибок нет.

Чистовое оформление рассматриваемого примера должно выглядеть примерно так:

Готово. Подведением «халявной» сложной функции под знак дифференциала: , в принципе, можно было пренебречь

Пример 10

Найти неопределенный интеграл:

Это пример для самостоятельного решения, ответ в конце урока

Пример 11

Найти неопределенный интеграл:

Что делать, когда перед находится минус? В этом случае, нужно вынести минус за скобки и расположить слагаемые в нужном нам порядке: . Константу («двойку» в данном случае) не трогаем!

Теперь в скобках прибавляем единичку. Анализируя выражение, приходим к выводу, что и за скобкой нужно единичку – прибавить:

Тут получилась формула , применяем:

ВСЕГДА выполняем на черновике проверку:
, что и требовалось проверить.

Чистовое оформление примера выглядит примерно так:

Усложняем задачу

Пример 12

Найти неопределенный интеграл:

Здесь при слагаемом уже не единичный коэффициент, а «пятёрка».

(1) Если при находится константа, то её сразу выносим за скобки.

(2) И вообще эту константу всегда лучше вынести за пределы интеграла, чтобы она не мешалась под ногами.

(3) Очевидно, что всё сведется к формуле . Надо разобраться в слагаемом , а именно, получить «двойку»

(4) Ага, . Значит, к выражению прибавляем , и эту же дробь вычитаем.

(5) Теперь выделяем полный квадрат. В общем случае также надо вычислить , но здесь у нас вырисовывается формула длинного логарифма , и действие выполнять не имеет смысла, почему – станет ясно чуть ниже.

(6) Собственно, можно применить формулу , только вместо «икс» у нас , что не отменяет справедливость табличного интеграла. Строго говоря, пропущен один шаг – перед интегрированием функцию следовало подвести под знак дифференциала: , но, как я уже неоднократно отмечал, этим часто пренебрегают.

(7) В ответе под корнем желательно раскрыть все скобки обратно:

Сложно? Это еще не самое сложное в интегральном исчислении. Хотя, рассматриваемые примеры не столько сложны, сколько требуют хорошей техники вычислений.

Пример 13

Найти неопределенный интеграл:

Это пример для самостоятельного решения. Ответ в конце урока.

Существуют интегралы с корнями в знаменателе, которые с помощью замены сводятся к интегралам рассмотренного типа, о них можно прочитать в статье Сложные интегралы , но она рассчитана на весьма подготовленных студентов.

Подведение числителя под знак дифференциала

Это заключительная часть урока, тем не менее, интегралы такого типа встречаются довольно часто! Если накопилась усталость, может, оно, лучше завтра почитать? ;)

Интегралы, которые мы будем рассматривать, похожи на интегралы предыдущего параграфа, они имеют вид: или (коэффициенты , и не равны нулю).

То есть, в числителе у нас появилась линейная функция. Как решать такие интегралы?

Выбор редакции
Начиная с XVII столетия наука выдвинула целый ряд классификаций человеческих рас. Сегодня их количество доходит до 15. Однако в основе...

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13...

Определение 1 Самосознание – это биологически обусловленная способность человека осознавать самого себя.Осознавание личностью себя как...

Изменения и особенности проведения ЕГЭ в 2015 году В 2014 году на федеральном уровне приняты нормативные и процедурные особенности...
Расскажу вам историю про воробья. Один фермер искал себе работника. Проведал про то воробьишка, прилетел к нему наниматься.- Да что от...
Здравствуйте, мои дорогие читатели! А есть ли у вас любимые книги, которые читаются на одном дыхании? Такие, чтобы ни кушать, ни спать...
Европа и мир за ее пределамиС точки зрения глубинного исторического анализа суть эволюционных процессов в Европе в конце XV века состояла...
Наш каталог образцов документов, формы контрактов и должностных инструкций собран в этом разделе ДОГОВОР НА ПРОХОЖДЕНИЕ ПРАКТИКИ СТУДЕНТА...
Тема: Человек, время, история в поэме «По праву памяти» Цель: познакомить учащихся с жизнью и творчеством ­кого; определить жанровые...