Что такое алгебраическая дробь определение. Как решать алгебраические дроби? Теория и практика. Формулировка и обоснование


На данном уроке рассматривается понятие алгебраической дроби. С дробями человек встречается в самых простых жизненных ситуациях: когда необходимо разделить некий объект на несколько частей, например, разрезать торт поровну на десять человек. Очевидно, что каждому достанется почасти торта. В указанном случае мы сталкиваемся с понятием числовой дроби, однако возможна ситуация, когда объект делится на неизвестное количество частей, например, на x. В таком случае возникает понятие дробного выражения. С целыми выражениями (не содержащими деление на выражения с переменными) и их свойствами вы уже познакомились в 7 классе. Далее мы рассмотрим понятие рациональной дроби, а также допустимых значений переменных.

Рациональные выражения делятся на целые и дробные выражения .

Определение. Рациональная дробь - дробное выражение вида , где - многочлены. - числитель, - знаменатель.

Примеры рациональных выражений: - дробные выражения; - целые выражения. В первом выражении, к примеру, в роли числителя выступает , а знаменателя - .

Значение алгебраической дроби , как и любого алгебраического выражения , зависит от численного значения тех переменных, которые в него входят. В частности, в первом примере значение дроби зависит от значений переменных и , а во втором только от значения переменной .

Рассмотрим первую типовую задачу: вычисление значения рациональной дроби при различных значениях входящих в нее переменных.

Пример 1. Вычислить значение дроби при а) , б) , в)

Решение. Подставим значения переменных в указанную дробь: а) , б) , в) - не существует (т. к. на ноль делить нельзя).

Ответ: а) 3; б) 1; в) не существует.

Как видим, возникает две типовые задачи для любой дроби: 1) вычисление дроби, 2) нахождение допустимых и недопустимых значений буквенных переменных.

Определение. Допустимые значения переменных - значения переменных, при которых выражение имеет смысл. Множество всех допустимых значений переменных называется ОДЗ или область определения .

Значение буквенных переменных может оказаться недопустимым, если знаменатель дроби при этих значениях равен нулю. Во всех остальных случаях значение переменных являются допустимыми, т. к. дробь можно вычислить.

Пример 2.

Решение. Чтобы данное выражение имело смысл, необходимо и достаточно, чтобы знаменатель дроби не равнялся нулю. Таким образом, недопустимыми будут только те значения переменной, при которых знаменатель будет равняться нулю. Знаменатель дроби , поэтому решим линейное уравнение:

Следовательно, при значении переменной дробь не имеет смысла.

Ответ: -5.

Из решения примера вытекает правило нахождения недопустимых значений переменных - знаменатель дроби приравнивается к нулю и находятся корни соответствующего уравнения.

Рассмотрим несколько аналогичных примеров.

Пример 3. Установить, при каких значениях переменной не имеет смысла дробь.

Решение. .

Ответ. .

Пример 4. Установить, при каких значениях переменной не имеет смысла дробь .

Решение. .

Встречаются и другие формулировки данной задачи - найти область определения или область допустимых значений выражения (ОДЗ) . Это означает - найти все допустимые значения переменных. В нашем примере - это все значения, кроме . Область определения удобно изображать на числовой оси.

Для этого на ней выколем точку , как это указано на рисунке:

Рис. 1

Таким образом, областью определения дроби будут все числа, кроме 3.

Ответ. .

Пример 5. Установить, при каких значениях переменной не имеет смысла дробь .

Решение. .

Изобразим полученное решение на числовой оси:

Рис. 2

Ответ. .

Пример 6.

Решение. . Мы получили равенство двух переменных, приведем числовые примеры: или и т. д.

Изобразим это решение на графике в декартовой системе координат:

Рис. 3. График функции

Координаты любой точки, лежащей на данном графике, не входят в область допустимых значений дроби.

Ответ. .

В рассмотренных примерах мы сталкивались с ситуацией, когда возникало деление на ноль. Теперь рассмотрим случай, когда возникает более интересная ситуация с делением типа .

Пример 7. Установить, при каких значениях переменных не имеет смысла дробь .

Решение. .

Получается, что дробь не имеет смысла при . Но можно возразить, что это не так, потому что: .

Может показаться, что если конечное выражение равно 8 при , то и исходное тоже возможно вычислить, а, следовательно, имеет смысл при . Однако, если подставить в исходное выражение, то получим - не имеет смысла.

Ответ. .

Чтобы подробнее разобраться с этим примером, решим следующую задачу: при каких значениях указанная дробь равна нулю?

§ 1 Понятие алгебраической дроби

Алгебраической дробью называют выражение

где Р и Q —многочлены; Р — числитель алгебраической дроби, Q — знаменатель алгебраической дроби.

Вот примеры алгебраических дробей:

Любой многочлен - это частный случай алгебраической дроби, потому что любой многочлен можно записать в виде

Например:

Значение алгебраической дроби зависит от значения переменных.

Например, вычислим значение дроби

1)

2)

В первом случае получаем:

Заметим, данную дробь можно сократить:

Таким образом, вычисление значения алгебраической дроби упрощается. Воспользуемся этим.

Во втором случае получим:

Как видно, с изменением значений переменных изменилось значение алгебраической дроби.

§ 2 Допустимые значения переменных алгебраической дроби

Рассмотрим алгебраическую дробь

Значение x = -1 является недопустимым для данной дроби, т.к. знаменатель дроби при таком значении х обращается в нуль. При этом значении переменной алгебраическая дробь не имеет смысла.

Таким образом, допустимыми значениями переменных алгебраической дроби являются такие значения переменных, при которых знаменатель дроби не обращается в нуль.

Решим несколько примеров.

При каких значениях переменной не имеет смысла алгебраическая дробь:

Для нахождения недопустимых значений переменных знаменатель дроби приравнивается к нулю, и находятся корни соответствующего уравнения.

При каких значениях переменной равна нулю алгебраическая дробь:

Дробь равна нулю, если числитель равен нулю. Приравняем к нулю числитель нашей дроби и найдем корни получившегося уравнения:

Таким образом, при x = 0 и x= 3 данная алгебраическая дробь не имеет смысла, а значит, мы должны исключить эти значения переменной из ответа.

Итак, на этом уроке Вы изучили основные понятия алгебраической дроби: числитель и знаменатель дроби, а также допустимые значения переменных алгебраической дроби.

Список использованной литературы:

  1. Мордкович А.Г. «Алгебра» 8 класс. В 2 ч. Ч.1 Учебник для общеобразовательных учреждений / А.Г. Мордкович. – 9-е изд., перераб. – М.: Мнемозина, 2007. – 215 с.: ил.
  2. Мордкович А.Г. «Алгебра» 8 класс. В 2 ч. Ч.2 Задачник для общеобразовательных учреждений / А.Г. Мордкович, Т.Н. Мишустина, Е.Е. Тульчинская. – 8-е изд., – М.: Мнемозина, 2006 – 239с.
  3. Алгебра. 8 класс. Контрольные работы для учащихся образовательных учреждений Л.А. Александрова под ред. А.Г. Мордковича 2-е изд., стер. - М.: Мнемозина 2009. - 40с.
  4. Алгебра. 8 класс. Самостоятельные работы для учащихся образовательных учреждений: к учебнику А.Г. Мордковича, Л.А. Александрова под ред. А.Г. Мордковича. 9-е изд., стер. - М.: Мнемозина 2013. - 112с.

На данном уроке рассматривается понятие алгебраической дроби. С дробями человек встречается в самых простых жизненных ситуациях: когда необходимо разделить некий объект на несколько частей, например, разрезать торт поровну на десять человек. Очевидно, что каждому достанется почасти торта. В указанном случае мы сталкиваемся с понятием числовой дроби, однако возможна ситуация, когда объект делится на неизвестное количество частей, например, на x. В таком случае возникает понятие дробного выражения. С целыми выражениями (не содержащими деление на выражения с переменными) и их свойствами вы уже познакомились в 7 классе. Далее мы рассмотрим понятие рациональной дроби, а также допустимых значений переменных.

Тема: Алгебраические дроби. Арифметические операции над алгебраическими дробями

Урок: Основные понятия

1. Определение и примеры алгебраических дробей

Рациональные выражения делятся на целые и дробные выражения .

Определение. Рациональная дробь - дробное выражение вида , где - многочлены. - числитель, - знаменатель.

Примеры рациональных выражений: - дробные выражения; - целые выражения. В первом выражении, к примеру, в роли числителя выступает , а знаменателя - .

Значение алгебраической дроби , как и любого алгебраического выражения , зависит от численного значения тех переменных, которые в него входят. В частности, в первом примере значение дроби зависит от значений переменных и , а во втором только от значения переменной .

2. Вычисление значения алгебраической дроби и две основные задачи на дроби

Рассмотрим первую типовую задачу: вычисление значения рациональной дроби при различных значениях входящих в нее переменных.

Пример 1. Вычислить значение дроби при а) , б) , в)

Решение. Подставим значения переменных в указанную дробь: а) , б) , в) - не существует (т. к. на ноль делить нельзя).

Ответ: 3; 1; не существует.

Как видим, возникает две типовые задачи для любой дроби: 1) вычисление дроби, 2) нахождение допустимых и недопустимых значений буквенных переменных.

Определение. Допустимые значения переменных - значения переменных, при которых выражение имеет смысл. Множество всех допустимых значений переменных называется ОДЗ или область определения .

3. Допустимые (ОДЗ) и недопустимые значения переменных в дробях с одной переменной

Значение буквенных переменных может оказаться недопустимым, если знаменатель дроби при этих значениях равен нулю. Во всех остальных случаях значение переменных являются допустимыми, т. к. дробь можно вычислить.

Пример 2. Установить, при каких значениях переменной не имеет смысла дробь .

Решение. Чтобы данное выражение имело смысл, необходимо и достаточно, чтобы знаменатель дроби не равнялся нулю. Таким образом, недопустимыми будут только те значения переменной, при которых знаменатель будет равняться нулю. Знаменатель дроби , поэтому решим линейное уравнение:

Следовательно, при значении переменной дробь не имеет смысла.

Из решения примера вытекает правило нахождения недопустимых значений переменных - знаменатель дроби приравнивается к нулю и находятся корни соответствующего уравнения.

Рассмотрим несколько аналогичных примеров.

Пример 3. Установить, при каких значениях переменной не имеет смысла дробь.

Решение. .

Ответ. .

Пример 4. Установить, при каких значениях переменной не имеет смысла дробь .

Решение..

Встречаются и другие формулировки данной задачи - найти область определения или область допустимых значений выражения (ОДЗ) . Это означает - найти все допустимые значения переменных. В нашем примере - это все значения, кроме . Область определения удобно изображать на числовой оси.

Для этого на ней выколем точку , как это указано на рисунке:

Таким образом, областью определения дроби будут все числа, кроме 3.

Ответ..

Пример 5. Установить, при каких значениях переменной не имеет смысла дробь .

Решение..

Изобразим полученное решение на числовой оси:

Ответ..

4. Графическое представление области допустимых (ОДЗ) и недопустимых значений переменных в дробях

Пример 6. Установить, при каких значениях переменных не имеет смысла дробь .

Решение.. Мы получили равенство двух переменных, приведем числовые примеры: или и т. д.

Изобразим это решение на графике в декартовой системе координат:

Рис. 3. График функции .

Координаты любой точки, лежащей на данном графике, не входят в область допустимых значений дроби.

Ответ. .

5. Случай типа "деление на ноль"

В рассмотренных примерах мы сталкивались с ситуацией, когда возникало деление на ноль. Теперь рассмотрим случай, когда возникает более интересная ситуация с делением типа .

Пример 7. Установить, при каких значениях переменных не имеет смысла дробь .

Решение..

Получается, что дробь не имеет смысла при . Но можно возразить, что это не так, потому что: .

Может показаться, что если конечное выражение равно 8 при , то и исходное тоже возможно вычислить, а, следовательно, имеет смысл при . Однако, если подставить в исходное выражение, то получим - не имеет смысла.

Ответ..

Чтобы подробнее разобраться с этим примером, решим следующую задачу: при каких значениях указанная дробь равна нулю?

(дробь равна нулю, когда ее числитель равен нулю) . Но необходимо решить исходное уравнение с дробью, а она не имеет смысла при , т. к. при этом значении переменной знаменатель равен нулю. Значит, данное уравнение имеет только один корень .

6. Правило нахождения ОДЗ

Таким образом, можем сформулировать точное правило нахождения области допустимых значений дроби: для нахождения ОДЗ дроби необходимо и достаточно приравнять ее знаменатель к нулю и найти корни полученного уравнения.

Мы рассмотрели две основные задачи: вычисление значения дроби при указанных значениях переменных и нахождение области допустимых значений дроби .

Рассмотрим теперь еще несколько задач, которые могут возникнуть при работе с дробями.

7. Разные задачи и выводы

Пример 8. Докажите, что при любых значениях переменной дробь .

Доказательство. Числитель - число положительное. . В итоге, и числитель, и знаменатель - положительные числа, следовательно, и дробь является положительным числом.

Доказано.

Пример 9. Известно, что , найти .

Решение. Поделим дробь почленно . Сокращать на мы имеем право, с учетом того, что является недопустимым значением переменной для данной дроби.

Ответ..

На данном уроке мы рассмотрели основные понятия, связанные с дробями. На следующем уроке мы рассмотрим основное свойство дроби .

Список литературы

1. Башмаков М. И. Алгебра 8 класс. - М.: Просвещение, 2004.

2. Дорофеев Г. В., Суворова С. Б., Бунимович Е. А. и др. Алгебра 8. - 5-е изд. - М.: Просвещение, 2010.

3. Никольский С. М., Потапов М. А., Решетников Н. Н., Шевкин А. В. Алгебра 8 класс. Учебник для общеобразовательных учреждений. - М.: Просвещение, 2006.

1. Фестиваль педагогических идей.

2. Старая школа.

3. Интернет-портал lib2.podelise. ru .

Домашнее задание

1. №4, 7, 9, 12, 13, 14. Дорофеев Г. В., Суворова С. Б., Бунимович Е. А. и др. Алгебра 8. - 5-е изд. - М.: Просвещение, 2010.

2. Запишите рациональную дробь, областью определения которой является: а) множество , б) множество , в) вся числовая ось.

3. Докажите, что при всех допустимых значениях переменной значение дроби неотрицательно.

4. Найдите область определения выражения . Указание: рассмотреть отдельно два случая: когда знаменатель нижней дроби равен нулю и когда знаменатель исходной дроби равен нулю.

В § 42 было сказано, что если деление многочленов нельзя выполнить нацело, то частное записывается в виде дробного выражения, в котором делимое является числителем, а делитель - знаменателем.

Примеры дробных выражений:

Числитель и знаменатель дробного выражения и сами могут быть дробными выражениями, например:

Из дробных алгебраических выражений наиболее часто приходится иметь дело с такими, в которых числитель и знаменатель являются многочленами (в частности, и одночленами). Каждое такое выражение называется алгебраической дробью.

Определение. Алгебраическое выражение, представляющее собой дробь, числитель и знаменатель которой - многочлены, называется алгебраической дробью.

Как и в арифметике, числитель и знаменатель алгебраической дроби называются членами дроби.

В дальнейшем, изучив действия над алгебраическими дробями, мы сможем всякое дробное выражение при помощи тождественных преобразований преобразовать в алгебраическую дробь.

Примеры алгебраических дробей:

Заметим, что целое выражение, то есть многочлен, можно записать в виде дроби, для этого достаточно записать в числителе данное выражение, а в знаменателе 1. Например:

2. Допустимые значения букв.

Буквы, входящие только в числитель, могут принимать любые значения (если не введены какие-либо дополнительные ограничения условием задачи).

Для букв же, входящих в знаменатель, допустимыми являются только те значения, которые не обращают в нуль знаменатель. Поэтому в дальнейшем всегда будем считать, что знаменатель алгебраической дроби не равен нулю.

Но в то время мы его сформулировали в «упрощенной» форме, удобной и достаточной для работы с обыкновенными дробями. В этой статье мы взглянем на основное свойство дроби применительно к алгебраическим дробям (то есть, к дробям, числителем и знаменателем которых являются многочлены, в некоторых учебниках алгебры такие дроби называют не алгебраическими, а рациональными дробями). Сначала сформулируем основное свойство алгебраической дроби , обоснуем его, а после этого перечислим основные области его применения.

Навигация по странице.

Формулировка и обоснование

Для начала напомним, как было сформулировано основное свойство дроби для обыкновенных дробей: если одновременно числитель и знаменатель обыкновенной дроби умножить или разделить на некоторое натуральное число, то значение дроби не изменится. Этому утверждению отвечают равенства и (которые справедливы и с переставленными частями в виде и ), где a , b и m – некоторые .

Фактически про деление числителя и знаменателя на число можно не говорить – этот случай покрывается равенством вида . Например, равенство можно обосновать через деление с использованием равенства как , но его же можно обосновать и на основании равенства как . Поэтому дальше мы будем ассоциировать основное свойство дроби с равенством (и ), и не будем останавливаться на равенстве (и ).

Теперь покажем, что основное свойство дроби распространяется и на дроби, числителем и знаменателем которых являются . Для этого докажем, что записанное равенство справедливо не только для натуральных чисел, но и для любых действительных чисел. Иными словами, докажем, что равенство справедливо для любых действительных чисел a , b и m , причем b и m – отличны от нуля (иначе мы столкнемся с делением на нуль).

Пусть дробь a/b является записью числа z , то есть, . Докажем, что дробь также отвечает числу z , то есть, докажем, что . Это будет доказывать равенство .

Стоит отметить, что если алгебраическая дробь имеет дробные коэффициенты, то умножение ее числителя и знаменателя не некоторое число позволяет перейти к целым коэффициентам, и тем самым упростить ее вид. К примеру, . А на умножении числителя и знаменателя на минус единицу основаны правила изменения знаков у членов алгебраической дроби .

Вторая важнейшая сфера применения основного свойства дроби – это сокращение алгебраических дробей . Сокращение в общем случае проводится в два этапа: сначала числитель и знаменатель раскладываются на множители, что позволяет отыскать общий множитель m , а дальше на базе равенства осуществляется переход к дроби вида a/b без этого общего множителя. Например, алгебраическая дробь после разложения числителя и знаменателя на множители принимает вид www.сайт , включая внутренние материалы и внешнее оформление, нельзя воспроизводить в какой-либо форме или использовать без предварительного письменного разрешения правообладателя.

Выбор редакции
Подробности Категория: Физика атома и атомного ядра Опубликовано 10.03.2016 18:27 Просмотров: 5164 Древнегреческие и древнеиндийские...

Ценностями в наиболее общем смысле называют вещи и явления, имеющие существенное значение для человека и общества. Ценности обладают...

Типы населённых пунктов России Работу выполнила: ученица 6 класса Каравашкина АннаНаселённый пункт - населённое людьми место (поселение),...

Все началось в далеком 1934 году.В конце 20-х - начале 30-х годов принципиально менялась инфраструктура Челябинска. За короткое время он...
Начиная с XVII столетия наука выдвинула целый ряд классификаций человеческих рас. Сегодня их количество доходит до 15. Однако в основе...
Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13...
Определение 1 Самосознание – это биологически обусловленная способность человека осознавать самого себя.Осознавание личностью себя как...
Изменения и особенности проведения ЕГЭ в 2015 году В 2014 году на федеральном уровне приняты нормативные и процедурные особенности...
Расскажу вам историю про воробья. Один фермер искал себе работника. Проведал про то воробьишка, прилетел к нему наниматься.- Да что от...