Рентгеноструктурный анализ кристаллов. Рентгеноструктурный анализ - это что такое? Успех не за горами


Рентгеновский структурный анализ

методы исследования структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения. Р. с. а. наряду с нейтронографией (См. Нейтронография) и электронографией (См. Электронография) является дифракционным структурным методом; в его основе лежит взаимодействие рентгеновского излучения с электронами вещества, в результате которого возникает Дифракция рентгеновских лучей . Дифракционная картина зависит от длины волны используемых рентгеновских лучей (См. Рентгеновские лучи) и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны Рентгеновский структурный анализ1 Å, т. е. порядка размеров атомов. Методами Р. с. а. изучают металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные материалы, жидкости и газы, молекулы белков, нуклеиновых кислот и т.д. Наиболее успешно Р. с. а. применяют для установления атомной структуры кристаллических тел. Это обусловлено тем, что Кристаллы обладают строгой периодичностью строения и представляют собой созданную самой природой дифракционную решётку для рентгеновских лучей.

Историческая справка. Дифракция рентгеновских лучей на кристаллах была открыта в 1912 немецкими физиками М. Лауэ , В. Фридрихом и П. Книппингом. Направив узкий пучок рентгеновских лучей на неподвижный кристалл, они зарегистрировали на помещенной за кристаллом фотопластинке дифракционную картину, которая состояла из большого числа закономерно расположенных пятен. Каждое пятно - след дифракционного луча, рассеянного кристаллом. Рентгенограмма , полученная таким методом, носит название лауэграммы (См. Лауэграмма) (рис. 1 ).

Разработанная Лауэ теория дифракции рентгеновских лучей на кристаллах позволила связать длину волны λ излучения, параметры элементарной ячейки кристалла а, b, с (см. Кристаллическая решётка), углы падающего (α 0 , β 0 , γ 0) и дифракционного (α, β, γ) лучей соотношениями:

a (cosα- cosα 0) = h λ,

b (cosβ - cosβ 0) = k λ, (1)

c (cosγ - cosγ 0) =l λ,

В 50-х гг. начали бурно развиваться методы Р. с. а. с использованием ЭВМ в технике эксперимента и при обработке рентгеновской дифракционной информации.

Экспериментальные методы Р. с. а. Для создания условий дифракции и регистрации излучения служат рентгеновские камеры (См. Рентгеновская камера) и рентгеновские дифрактометры (См. Рентгеновский дифрактометр). Рассеянное рентгеновское излучение в них фиксируется на фотоплёнке или измеряется детекторами ядерных излучений (См. Детекторы ядерных излучений). В зависимости от состояния исследуемого образца и его свойств, а также от характера и объёма информации, которую необходимо получить, применяют различные методы Р. с. а. Монокристаллы, отбираемые для исследования атомной структуры, должны иметь размеры Рентгеновский структурный анализ 0,1 мм и по возможности обладать совершенной структурой. Исследованием дефектов в сравнительно крупных почти совершенных кристаллах занимается Рентгеновская топография , которую иногда относят к Р. с. а.

Метод Лауэ - простейший метод получения рентгенограмм от монокристаллов. Кристалл в эксперименте Лауэ неподвижен, а используемое рентгеновское излучение имеет непрерывный спектр. Расположение дифракционных пятен на лауэграммах (рис. 1 ) зависит от симметрии кристалла (См. Симметрия кристаллов) и его ориентации относительно падающего луча. Метод Лауэ позволяет установить принадлежность исследуемого кристалла к одной и 11 лауэвских групп симметрии и ориентировать его (т. е. определять направление кристаллографических осей) с точностью до нескольких угловых минут. По характеру пятен на лауэграммах и особенно появлению Астеризм а можно выявить внутренние напряжения и некоторые др. дефекты кристаллической структуры. Методом Лауэ проверяют качество монокристаллов при выборе образца для его более полного структурного исследования.

Методы качания и вращения образца используют для определения периодов повторяемости (постоянной решётки) вдоль кристаллографического направления в монокристалле. Они позволяют, в частности, установить параметры а , b, с элементарной ячейки кристалла. В этом методе используют монохроматическое рентгеновское излучение, образец приводится в колебательное или вращательное движение вокруг оси, совпадающей с кристаллографическим направлением, вдоль которого и исследуют период повторяемости. Пятна на рентгенограммах качания и вращения, полученных в цилиндрических кассетах, располагаются на семействе параллельных линий. Расстояния между этими линиями, длина волны излучения и диаметр кассеты рентгеновской камеры позволяют вычислить искомый период повторяемости в кристалле. Условия Лауэ для дифракционных лучей в этом методе выполняются за счёт изменения углов, входящих в соотношения (1) при качании или вращении образца.

Рентгенгониометрические методы. Для полного исследования структуры монокристалла методами Р. с. а. необходимо не только установить положение, но и измерить интенсивности как можно большего числа дифракционных отражений, которые могут быть получены от кристалла при данной длине волны излучения и всех возможных ориентациях образца. Для этого дифракционную картину регистрируют на фотоплёнке в рентгеновском гониометре (См. Рентгеновский гониометр) и измеряют с помощью Микрофотометр а степень почернения каждого пятна на рентгенограмме. В рентгеновском дифрактометре (См. Рентгеновский дифрактометр) можно непосредственно измерять интенсивность дифракционных отражений с помощью пропорциональных, сцинтилляционных и других счётчиков рентгеновских квантов. Чтобы иметь полный набор отражений, в рентгеновских гониометрах получают серию рентгенограмм. На каждой из них фиксируются дифракционные отражения, на миллеровские индексы которых накладывают определённые ограничения (например, на разных рентгенограммах регистрируются отражения типа hk 0, hk 1 и т.д.). Наиболее часто производят рентгеногониометрический эксперимент по методам Вайсенберга. Бюргера (рис. 2 ) и де Ионга - Боумена. Такую же информацию можно получить и с помощью рентгенограмм качания.

Для установления атомной структуры средней сложности (Рентгеновский структурный анализ 50-100 атомов в элементарной ячейке) необходимо измерить интенсивности нескольких сотен и даже тысяч дифракционных отражений. Эту весьма трудоёмкую и кропотливую работу выполняют автоматические микроденситометры и дифрактометры, управляемые ЭВМ, иногда в течение нескольких недель и даже месяцев (например, при анализе структур белков, когда число отражений возрастает до сотен тысяч). Применением в дифрактометре нескольких счётчиков, которые могут параллельно регистрировать отражения, время эксперимента удаётся значительно сократить. Дифрактометрические измерения превосходят фоторегистрацию по чувствительности и точности.

Метод исследования поликристаллов (Дебая - Шеррера метод). Металлы, сплавы, кристаллические порошки состоят из множества мелких монокристаллов данного вещества. Для их исследования используют монохроматическое излучение. Рентгенограмма (дебаеграмма) поликристаллов представляет собой несколько концентрических колец, в каждое из которых сливаются отражения от определённой системы плоскостей различно ориентированных монокристаллов. Дебаеграммы различных веществ имеют индивидуальный характер и широко используются для идентификации соединений (в том числе и в смесях). Р.с.а. поликристаллов позволяет определять фазовый состав образцов, устанавливать размеры и преимущественную ориентацию (текстурирование) зёрен в веществе, осуществлять контроль за напряжениями в образце и решать другие технические задачи.

Исследование аморфных материалов и частично упорядоченных объектов. Чёткую рентгенограмму с острыми дифракционными максимумами можно получить только при полной трёхмерной периодичности образца. Чем ниже степень упорядоченности атомного строения материала, тем более размытый, диффузный характер имеет рассеянное им рентгеновское излучение. Диаметр диффузного кольца на рентгенограмме аморфного вещества может служить для грубой оценки средних межатомных расстояний в нём. С ростом степени упорядоченности (см. Дальний порядок и ближний порядок) в строении объектов дифракционная картина усложняется и, следовательно, содержит больше структурной информации.

Метод малоуглового рассеяния позволяет изучать пространственные неоднородности вещества, размеры которых превышают межатомные расстояния, т.е. составляют от 5-10 Å до Рентгеновский структурный анализ 10 000 Å. Рассеянное рентгеновское излучение в этом случае концентрируется вблизи первичного пучка - в области малых углов рассеяния. Малоугловое рассеяние применяют для исследования пористых и мелкодисперсных материалов, сплавов и сложных биологических объектов: вирусов, клеточных мембран, хромосом. Для изолированных молекул белка и нуклеиновых кислот метод позволяет определить их форму, размеры, молекулярную массу; в вирусах - характер взаимной укладки составляющих их компонент: белка, нуклеиновых кислот, липидов; в синтетических полимерах - упаковку полимерных цепей; в порошках и сорбентах - распределение частиц и пор по размерам; в сплавах - возникновение и размеры фаз; в текстурах (в частности, в жидких кристаллах) - форму упаковки частиц (молекул) в различного рода надмолекулярные структуры. Рентгеновский малоугловой метод применяется и в промышленности при контроле процессов изготовления катализаторов, высокодисперсных углей и т.д. В зависимости от строения объекта измерения производят для углов рассеяния от долей минуты до нескольких градусов.

Определение атомной структуры по данным дифракции рентгеновских лучей. Расшифровка атомной структуры кристалла включает: установление размеров и формы его элементарной ячейки; определение принадлежности кристалла к одной из 230 федоровских (открытых Е. С. Федоровым (См. Фёдоров)) групп симметрии кристаллов (См. Симметрия кристаллов); получение координат базисных атомов структуры. Первую и частично вторую задачи можно решить методами Лауэ и качания или вращения кристалла. Окончательно установить группу симметрии и координаты базисных атомов сложных структур возможно только с помощью сложного анализа и трудоёмкой математической обработки значений интенсивностей всех дифракционных отражений от данного кристалла. Конечная цель такой обработки состоит в вычислении по экспериментальным данным значений электронной плотности ρ(х, у, z ) в любой точке ячейки кристалла с координатами x , у, z. Периодичность строения кристалла позволяет записать электронную плотность в нём через Фурье ряд :

где V - объём элементарной ячейки, F hkl - коэффициенты Фурье, которые в Р. с. а. называются структурными амплитудами, i = hkl и связана с тем дифракционным отражением, которое определяется условиями (1). Назначение суммирования (2) - математически собрать дифракционные рентгеновские отражения, чтобы получить изображение атомной структуры. Производить таким образом синтез изображения в Р. с. а. приходится из-за отсутствия в природе линз для рентгеновского излучения (в оптике видимого света для этого служит собирающая линза).

Дифракционное отражение - волновой процесс. Он характеризуется амплитудой, равной ∣F hkl ∣, и фазой α hkl (сдвигом фазы отражённой волны по отношению к падающей), через которую выражается структурная амплитуда: F hkl =∣F hkl ∣(cosα hkl + i sinα hkl ). Дифракционный эксперимент позволяет измерять только интенсивности отражений, пропорциональные ∣F hkl ∣ 2 , но не их фазы. Определение фаз составляет основную проблему расшифровки структуры кристалла. Определение фаз структурных амплитуд в принципиальном отношении одинаково как для кристаллов, состоящих из атомов, так и для кристаллов, состоящих из молекул. Определив координаты атомов в молекулярном кристаллическом веществе, можно выделить составляющие его молекулы и установить их размер и форму.

Легко решается задача, обратная структурной расшифровке: вычисление по известной атомной структуре структурных амплитуд, а по ним - интенсивностей дифракционных отражений. Метод проб и ошибок, исторически первый метод расшифровки структур, состоит в сопоставлении экспериментально полученных ∣F hkl ∣ эксп, с вычисленными на основе пробной модели значениями ∣F hkl ∣ выч. В зависимости от величины фактора расходимости

Принципиально новый путь к расшифровке атомных структур монокристаллов открыло применение т. н. функций Патерсона (функций межатомных векторов). Для построения функции Патерсона некоторой структуры, состоящей из N атомов, перенесём её параллельно самой себе так, чтобы в фиксированное начало координат попал сначала первый атом. Векторы от начала координат до всех атомов структуры (включая вектор нулевой длины до первого атома) укажут положение N максимумов функции межатомных векторов, совокупность которых называется изображением структуры в атоме 1. Добавим к ним ещё N максимумов, положение которых укажет N векторов от второго атома, помещенного при параллельном переносе структуры в то же начало координат. Проделав эту процедуру со всеми N атомами (рис. 3 ), мы получим N 2 векторов. Функция, описывающая их положение, и есть функция Патерсона.

Для функции Патерсона Р (u, υ, ω ) (u, υ, ω - координаты точек в пространстве межатомных векторов) можно получить выражение:

из которого следует, что она определяется модулями структурных амплитуд, не зависит от их фаз и, следовательно, может быть вычислена непосредственно по данным дифракционного эксперимента. Трудность интерпретации функции Р (u, υ, ω ) состоит в необходимости нахождения координат N атомов из N 2 её максимумов, многие из которых сливаются из-за перекрытий, возникающих при построении функции межатомных векторов. Наиболее прост для расшифровки Р (u, υ, ω ) случай, когда в структуре содержится один тяжёлый атом и несколько лёгких. Изображение такой структуры в тяжёлом атоме будет значительно отличаться от др. её изображений. Среди различных методик, позволяющих определить модель исследуемой структуры по функции Патерсона, наиболее эффективными оказались так называемые суперпозиционные методы, которые позволили формализовать её анализ и выполнять его на ЭВМ.

Методы функции Патерсона сталкиваются с серьёзными трудностями при исследовании структур кристаллов, состоящих из одинаковых пли близких по атомному номеру атомов. В этом случае более эффективными оказались Так называемые прямые методы определения фаз структурных амплитуд. Учитывая тот факт, что значение электронной плотности в кристалле всегда положительно (или равно нулю), можно получить большое число неравенств, которым подчиняются коэффициенты Фурье (структурные амплитуды) функции ρ(x , у, z ). Методами неравенств можно сравнительно просто анализировать структуры, содержащие до 20-40 атомов в элементарной ячейке кристалла. Для более сложных структур применяются методы, основанные на вероятностном подходе к проблеме: структурные амплитуды и их фазы рассматриваются как случайные величины; из физических представлений выводятся функции распределения этих случайных величин, которые дают возможность оценить с учётом экспериментальных значений модулей структурных амплитуд наиболее вероятные значения фаз. Эти методы также реализованы на ЭВМ и позволяют расшифровать структуры, содержащие 100-200 и более атомов в элементарной ячейке кристалла.

Итак, если фазы структурных амплитуд установлены, то по (2) может быть вычислено распределение электронной плотности в кристалле, максимумы этого распределения соответствуют положению атомов в структуре (рис. 4 ). Заключительное уточнение координат атомов проводится на ЭВМ Наименьших квадратов метод ом и в зависимости от качества эксперимента и сложности структуры позволяет получить их с точностью до тысячных долей Å (с помощью современного дифракционного эксперимента можно вычислять также количественные характеристики тепловых колебаний атомов в кристалле с учётом анизотропии этих колебаний). Р. с. а. даёт возможность установить и более тонкие характеристики атомных структур, например распределение валентных электронов в кристалле. Однако эта сложная задача решена пока только для простейших структур. Весьма перспективно для этой цели сочетание нейтронографических и рентгенографических исследований: нейтронографические данные о координатах ядер атомов сопоставляют с распределением в пространстве электронного облака, полученным с помощью Р. с. а. Для решения многих физических и химических задач совместно используют рентгеноструктурные исследования и резонансные методы.

Вершина достижений Р. с. а. - расшифровка трёхмерной структуры белков, нуклеиновых кислот и других макромолекул. Белки в естественных условиях, как правило, кристаллов не образуют. Чтобы добиться регулярного расположения белковых молекул, белки кристаллизуют и затем исследуют их структуру. Фазы структурных амплитуд белковых кристаллов можно определить только в результате совместных усилий рентгенографов и биохимиков. Для решения этой проблемы необходимо получить и исследовать кристаллы самого белка, а также его производных с включением тяжёлых атомов, причём координаты атомов во всех этих структурах должны совпадать.

О многочисленных применениях методов Р. с. а. для исследования различных нарушений структуры твёрдых тел под влиянием всевозможных воздействий см. в ст. Рентгенография материалов .

Лит.: Белов Н. В., Структурная кристаллография, М., 1951; Жданов Г. С., Основы рентгеноструктурного анализа, М. - Л., 1940; Джеймс Р., Оптические принципы дифракции рентгеновских лучей, пер. с англ., М., 1950; Бокий Г. Б., Порай-Кошиц М. А., Рентгеноструктурный анализ, М., 1964; Порай-Кошиц М. А., Практический курс рентгеноструктурного анализа, М., 1960: Китайгородский А. И., Теория структурного анализа, М., 1957; Липеон Г., Кокрен В., Определение структуры кристаллов, пер. с англ., М., 1961; Вайнштейн Б. К., Структурная электронография, М., 1956; Бэкон Дж., Дифракция нейтронов, пер. с англ., М., 1957; Бюргер М., Структура кристаллов и векторное пространство, пер. с англ., М., 1961; Гинье А., Рентгенография кристаллов, пер. с франц., М., 1961; Woolfson М. М., An introduction to X-ray crystallography, Camb., 1970: Ramachandran G. N., Srinivasan R., Fourier methode in crystallography, N. Y., 1970; Crystallographic computing, ed. F. R. Ahmed, Cph., 1970; Stout G. H., Jensen L. H., X-ray structure determination, N. Y. - L., .

В. И. Симонов.

Рис. 9. а. Проекция на плоскость ab функции межатомных векторов минерала баотита O 16 Cl]. Линии проведены через одинаковые интервалы значений функции межатомных векторов (линии равного уровня). б. Проекция электронной плотности баотита на плоскость ab, полученная расшифровкой функции межатомных векторов (a). Максимумы электронной плотности (сгущения линий равного уровня) отвечают положениям атомов в структуре. в. Изображение модели атомной структуры баотита. Каждый атом Si расположен внутри тетраэдра, образованного четырьмя атомами O; атомы Ti и Nb - в октаэдрах, составленных атомами O. Тетраэдры SiO 4 и октаэдры Ti(Nb)O 6 в структуре баотита соединены, как показано на рисунке. Часть элементарной ячейки кристалла, соответствующая рис. а и б, выделена штриховой линией. Точечные линии на рис. а и б определяют нулевые уровни значений соответствующих функций.

Физическая энциклопедия - РЕНТГЕНОВСКИЙ СТРУКТУРНЫЙ АНАЛИЗ, исследование атомной структуры образца вещества по картине дифракции на нем рентгеновского излучения. Позволяет установить распределение электронной плотности вещества, по которому определяют род атомов и их… … Иллюстрированный энциклопедический словарь

- (рентгеноструктурный анализ), совокупность методов исследования атомной структуры вещества с помощью дифракции рентгеновских лучей. По дифракционной картине устанавливают распределение электронной плотности вещества, а по ней род атомов и их… … Энциклопедический словарь

- (рентгено структурный анализ), метод исследования атомно мол. строения в в, гл. обр. кристаллов, основанный на изучении дифракции, возникающей при взаимод. с исследуемым образцом рентгеновского излучения длины волны ок. 0,1 нм. Используют гл. обр … Химическая энциклопедия - (см. РЕНТГЕНОВСКИЙ СТРУКТУРНЫЙ АНАЛИЗ, НЕЙТРОНОГРАФИЯ, ЭЛЕКТРОНОГРАФИЯ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

Определение строения в в и материалов, т. е. выяснение расположения в пространстве составляющих их структурных единиц (молекул, ионов, атомов). В узком смысле С. а. определение геометрии молекул и мол. систем, к рую обычно описывают набором длин… … Химическая энциклопедия

Рентгеновские лучи, открытые в 1895 г. В. Рентгеном – это электромагнитные колебания весьма малой длины волны, сравнимой с атомными размерами, возникающими при воздействии на вещество быстрыми электронами.

Рентгеновские лучи широко используются в науке и технике.

Их волновая природа установлена в 1912 г. немецкими физиками М.Лауэ, В.Фридрихом и П. Книппингом, открывшими явление дифракции рентгеновских лучей на атомной решётке кристаллов. Направив узкий пучок рентгеновских лучей на неподвижный кристалл, они зарегистрировали на помещённой за кристаллом фотопластинке дифракционную картину, которая состояла из большого числа закономерно расположенных пятен. Каждое пятно - след дифракционного луча, рассеянного кристаллом. Рентгенограмма, полученная таким методом носит название лауэграммы. Это открытие явилось основой рентгеноструктурного анализа.

Длины волн рентгеновских лучей, используемых в практических целях, лежат в пределах от нескольких ангстрем до долей ангстрема (Å), что соответствует энергии электронов, вызывающих рентгеновское излучение от 10³до10 5 эв.

Рентгеноструктурный анализ это метод исследования строения тел, использующий явление дифракции рентгеновских лучей, метод исследования структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения. Дифракционная картина зависит от длины волны используемых рентгеновских лучей и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны ~1Å, т.е. порядка размеров атома.

Методами рентгеноструктурного анализа изучают металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные материалы, жидкости и газы, молекулы белков, нуклеиновых кислот и т.д. Рентгеноструктурный анализ является основным методом определения структуры кристаллов. При исследовании кристаллов он даёт наибольшую информацию. Это обусловлено тем, что кристаллы обладают строгой периодичностью строения и представляют собой созданною самой природой дифракционную решётку для рентгеновских лучей. Однако он доставляет ценные сведения и при исследовании тел с менее упорядоченной структурой, таких, как жидкости, аморфные тела, жидкие кристаллы, полимеры и другие. На основе многочисленных уже расшифрованных атомных структур может быть решена и обратная задача: по рентгенограмме поликристаллического вещества, например легированной стали, сплава, руды, лунного грунта, может быть установлен кристаллический состав этого вещества, то есть выполнен фазовый анализ.

В ходе рентгеноструктурного анализа исследуемый образец помещают на пути рентгеновских лучей и регистрируют дифракционную картину, возникающую в результате взаимодействия лучей с веществом. На следующем этапе исследования анализируют дифракционную картину и расчётным путём устанавливают взаимное расположение частиц в пространстве, вызвавшее появление данной картины.

Рентгеноструктурный анализ кристаллических веществ распадается на два этапа.

1) Определение размеров элементарной ячейки кристалла, числа частиц (атомов, молекул) в элементарной ячейке и симметрии расположения частиц (так называемой пространственной группы). Эти данные получают путём анализа геометрии расположения дифракционных максимумов.

2) Расчёт электронной плотности внутри элементарной ячейки и определение координат атомов, которые отождествляются с положением максимумов электронной плотности. Эти данные получают анализом интенсивности дифракционных максимумов.

Методы рентгеновской съёмки кристаллов.

Существуют различные экспериментальные методы получения и регистрации дифракционной картины. В любом случае имеется источник рентгеновского излучения, система для выделения узкого пучка рентгеновских лучей, устройство для закрепления и ориентирования образца в пучке и приёмник рассеянного образцом излучения. Приёмником служит фотоплёнка, либо ионизационные или сцинтилляционные счётчики рентгеновских квантов. Метод регистрации с помощью счётчиков (дифрактометрический) обеспечивает значительно более высокую точность определения интенсивности регистрируемого излучения.

Из условия Вульфа – Брэгга непосредственно следует, что при регистрации дифракционной картины один из двух входящих в него параметров ¾l -длина волны или q -угол падения, должен быть переменным.

Основными рентгеновской съёмки кристаллов являются: метод Лауэ, метод порошка (метод дебаеграмм), метод вращения и его разновидность – метод качания и различные методы рентгенгониометра.

В методе Лауэ на монокристаллический образец падает пучок немонохроматических («белых») лучей (рис.). Дифрагируют лишь те лучи, длины волн которых удовлетворяют условию Вульфа – Брэгга. Дифракционные пятна на лауграмме (рис.) располагаются по эллипсам, гиперболам и прямым, обязательно проходящим через пятно от первичного пучка.

Рис.– Схема метода рентгеновской съёмки по Лауэ: 1- пучок рентгеновских лучей, падающих на монокристаллический образец; 2 – коллиматор; 3 – образец; 4 – дифрагированные лучи; 5 – плоская фотоплёнка;

б – типичная лауэграмма.

Важное свойство лауэграммы состоит в том, что при соответствующей ориентировке кристалла симметрия расположения этих кривых отражает симметрию кристалла. По характеру пятен на лауэграммах можно выявить внутренние напряжения и некоторые другие дефекты кристаллической структуры. Индицирование же отдельных пятен лауэграммы весьма затруднительно. Поэтому метод Лауэ применяют исключительно для нахождения нужной ориентировки кристалла и определения его элементов симметрии. Этим методом проверяют качество моно кристаллов при выборе образца для более полного структурного исследования.

В методе порошка (рис),так же как и во всех остальных описываемых ниже методах рентгеновской съёмки, используется монохроматическое излучение. Переменным параметром является угол q падения так как в поликристаллическом порошковом образце всегда присутствуют кристаллики любой ориентации по отношению к направлению первичного пучка.

Рис– схема рентгеновской съёмки по методу порошка: 1 – первичный пучок; 2 – порошковый или поликристаллический образец; 3 – фотоплёнка, свёрнутая по окружности; 4 – дифракционные конусы; 5 – «дуги» на фотоплёнке, возникающие при пересечении её поверхности с дифракционными конусами;

б – типичная порошковая рентгенограмма (дибаеграмма).

Лучи от всех кристалликов, у которых плоскости с данным межплоскостным расстоянием d hk1 находятся в «отражающем положении», то есть удовлетворяют условию Вульфа – Брэгга, образуют вокруг первичного луча конус с углом растра 4q. Каждому d hk1 соответствует свой дифракционный конус. Пересечение каждого конуса дифрагированных рентгеновских лучей с полоской фотоплёнки, свёрнутой в виде цилиндра, ось которого проходит через образец, приводит к появлению на ней следов, имеющих вид дужек, расположенных симметрично относительно первичного пучка (рис.). Зная расстояния между симметричными «дугами», можно вычислить соответствующие им межплоскостные расстояния d в кристалле.

Метод порошка наиболее прост и удобен с точки зрения техники экспермента, однако единственная поставляемая им информация – выбор межплоскостных расстояний – позволяет расшифровывать самые простые структуры.

В методе вращения (рис.) переменным параметром является угол q.

Съёмка производится на цилиндрическую фотоплёнку. В течение всего времени экспозиции кристаллравномерно вращается вокруг свей оси, совпадающей с каким-либо важным кристаллографическим направлением и с осью образуемого планкой цилиндра. Дифракционные лучи идут по образующим конусов, которые при пересечении с плёнкой дают линии, состоящие из пятен (так называемые слоевые линии.

Метод вращения даёт экспериментатору более богатую информацию, чем метод порошка. По расстояниям между слоевыми линиями можно рассчитать период решётки в направлении оси вращения кристалла.

Рис. – схема рентгеновской съёмки по методу вращения: 1 – первичный пучок;

2 – образец (вращается по стрелке); 3 – фотоплёнка цилиндрической формы;

б – типичная рентгенограмма вращения.

В рассматриваемом методе упрощается индицирование пятен рентгенограммы. Так если кристалл вращается вокруг оси с решётки, то все пятна на линии, проходящей через след первичного луча, имеют индексы (h,k,0), на соседних с ней слоевых линиях – соответственно (h,k,1) и (h,k,1 ¯) и так далее. Однако и метод вращения не даёт всей возможной информации, так никогда неизвестно, при каком угле поворота кристалла вокруг оси вращения образовалось то или иное дифракционное пятно.

В методе качания , который является разновидностью метода вращения, образец не совершает полного вращения, а «качается» вокруг той же оси в небольшом угловом интервале. Это облегчает индицирование пятен, так как позволяет как бы получать рентгенограмму вращения по частям и определять с точностью до величины интервала качания, под каким углом поворота кристалла к первичному пучку возникли те или иные дифракционные пятна.

Наиболее богатую информацию дают методы рентгеногониометра . Рентгеновский гониометр, прибор, с помощью которого можно одновременно регистрировать направление дифрагированных на исследуемом образце рентгеновских лучей и положение образца в момент возникновения дифракции. Один из них – метод Вайссенберга, является дальнейшим развитием метода вращения. В отличие от последнего, в рентгеногониометре Вайссенберга все дифракционные конусы, кроме одного, закрываются цилиндрической ширмой, а пятна оставшегося дифракционного конуса (или, что то же, слоевой линии) «разворачиваются» на всю площадь фотоплёнки путём её возвратно-поступательного осевого перемещения синхронно с вращением кристалла. Это позволяет определить, при какой ориентации кристалла возникло каждое пятно вассенбергограммы.

Рис. Принципиальная схема рентгенгониометра Вайссенберга: 1 – неподвижная ширма, пропускающая только один дифракционный конус; 2 – кристалл, поворачивающийся вокруг оси Х – Х; 3 – цилиндрическая фотоплёнка, двигающаяся поступательно вдоль оси Х – Х синхронно с вращением кристалла 2; 4 – дифракционный конус, пропущенный ширмой; 5 – первичный пучок.

Существуют и другие методы съёмки, в которых применяется одновременное синхронное движение образца и фотоплёнки. Важнейшими из них являются метод фотографирования обратной решётки и прецессионный метод Бюргера. Во всех этих методах использована фотографическая регистрация дифракционной картины. В рентгеновском дифрактометре можно непосредственно измерять интенсивность дифракционных отражений с помощью пропорциональных, сцинтилляционных и других счётчиков рентгеновских квантов.

Применение рентгеноструктурного анализа.

Рентгеноструктурный анализ позволяет объективно устанавливать структуру кристаллических веществ, в том числе таких сложных, как витамины, антибиотики, координационные соединения и т.д. Полное структурное исследование кристалла часто позволяет решить и чисто химические задачи, например установление или уточнение химической формулы, типа связи, молекулярного веса при известной плотности или плотности при известном молекулярном весе, симметрии и конфигурации молекул и молекулярных ионов.

Рентгеноструктурный анализ с успехом применяется для изучения кристаллического состояния полимеров. Ценные сведения даёт рентгеноструктурный анализ и при исследовании аморфных и жидких тел. Рентгенограммы таких тел содержат несколько размытых дифракционных колец, интенсивность которых быстро падает с увеличением q. По ширине, форме и интенсивности этих колец можно делать заключения об особенностях ближнего порядка в той или иной конкретной жидкой или аморфной структуре.

Важной областью применения рентгеновских лучей является рентгенография металлов и сплавов, которая превратилась в отдельную отрасль науки. Понятие «рентгенография» включает в себя, наряду с полным или частичным рентгеноструктурным анализом, также и другие способы использования рентгеновских лучей – рентгеновскую дефектоскопию (просвечивание), рентгеноспектральный анализ, рентгеновскую микроскопию и другое. Определены структуры чистых металлов и многих сплавов. основанная на рентгеноструктурном анализе кристаллохимия сплавов – один из ведущих разделов металловедения. Ни одна диаграмма состояния металлических сплавов не может считаться надёжно установленной, если данные сплавы не исследованы методами рентгеноструктурного анализа. Благодаря применению методов рентгеноструктурного анализа оказалось возможным глубоко изучить структурные изменения, протекающие в металлах и сплавах при их пластической и термической обработке.

Метод рентгеноструктурного анализа свойственны и серьёзные ограничения. Для проведения полного рентгеноструктурного анализа необходимо, чтобы вещество хорошо кристаллизовалось и давало достаточно устойчивые кристаллы. Иногда необходимо проводить исследование при высоких или низких температурах. Это сильно затрудняет проведение эксперимента. Полное исследование очень трудоёмко, длительно и сопряжено с большим объёмом вычислительной работы.

Для установления атомной структуры средней сложности (~50- 100 атомов в элементарной ячейке) необходимо измерять интенсивности нескольких сотен и даже тысяч дифракционных отражений. Эту весьма трудоёмкую и кропотливую работу выполняют автоматические микроденситомеры и дифрактометры, управляемые ЭВМ, иногда в течение нескольких недель и даже месяцев (например, при анализе структур белков, когда число отражений возрастает до сотен тысяч). В связи с этим в последние годы для решения задач рентгеноструктурного анализа получили широкое применение быстродействующие ЭВМ. Однако даже с применением ЭВМ определение структуры остаётся сложной и трудоёмкой работой. Применение в дифрактометре нескольких счётчиков, которые могут параллельно регистрировать отражения, время эксперимента удаётся сократить. Дифрактометрические измерения превосходят фоторегистрацию по чувствительности и точности.

Позволяя объективно определить структуру молекул и общий характер взаимодействия молекул в кристалле, исследование методом рентгеноструктурного анализа не всегда даёт возможность с нужной степенью достоверности судить о различиях в характере химических связей внутри молекулы, так как точность определения длин связей и валентных углов часто оказывается недостаточной для этой цели. Серьёзным ограничением метода является также трудность определения положений лёгких атомов и особенно атомов водорода.

Реферат выполнила студентка II курса 2-ой группы Сапегина Н.Л.

Министерство здравоохранения Украины

Национальная фармацевтическая академия Украины

Кафедра физики и математики

Курс биофизика и физические методы анализа

г. Харьков

Введение

Рентгеновские лучи, открытые в 1895 г. В. Рентгеном – это электромагнитные колебания весьма малой длины волны, сравнимой с атомными размерами, возникающими при воздействии на вещество быстрыми электронами.

Рентгеновские лучи широко используются в науке и технике.

Их волновая природа установлена в 1912 г. немецкими физиками М.Лауэ, В.Фридрихом и П.Книппингом, открывшими явление дифракции рентгеновских лучей на атомной решётке кристаллов. Направив узкий пучок рентгеновских лучей на неподвижный кристалл, они зарегистрировали на помещённой за кристаллом фотопластинке дифракционную картину, которая состояла из большого числа закономерно расположенных пятен. Каждое пятно - след дифракционного луча, рассеянного кристаллом. Рентгенограмма, полученная таким методом носит название лауэграммы. Это открытие явилось основой рентгеноструктурного анализа.

Длины волн рентгеновских лучей, используемых в практических целях, лежат в пределах от нескольких ангстрем до долей ангстрема (Å), что соответствует энергии электронов, вызывающих рентгеновское излучение от 10³ до 10 5 эв.

Рентгеновские спектры.

Различают два типа излучения: тормозное и характеристическое.

Тормозное излучение возникает при торможении электронов антикатодом рентгеновской трубки. Оно разлагается в сплошной спектр, имеющий резкую границу со стороны малых длин волн. Положение этой границы определяется энергией падающих на вещество электронов и не зависит от природы вещества. Интенсивность тормозного спектра быстро растёт с уменьшением массы бомбардирующих частиц и достигает значительной величины при возбуждении электронами.

Характеристические рентгеновские лучи образуются при выбивании электрона одного из внутренних слоёв атома с последующим переходом на освободившуюся орбиту электрона с какого-либо внешнего слоя. Они обладают линейчатым спектром, аналогичным оптическим спектрам газов. Однако между теми и другими спектрами имеется принципиальная разница: структура характеристического спектра рентгеновских лучей (число, относительное расположение и относительная яркость линий), в отличие от оптического спектра газов, не зависит от вещества (элемента), дающего этот спектр.

Спектральные линии характеристического спектра рентгеновских лучей образуют закономерные последовательности или серии. Эти серии обозначаются буквами K, L, M, N…, причем длины волн этих серий возрастают от K к L, от L к М и т. д. Наличие этих серий теснейшим образом связано со строением электронных оболочек атомов.

Характеристические рентгеновские спектры испускают атомы мишени, у которых при столкновении с заряженной частицей высокой энергии или фотоном первичного рентгеновского излучения с одной из внутренних оболочек (K-, L-, M-, … оболочек) вылетает электрон. Состояние атома с вакансией во внутренней оболочке (его начальное состояние) неустойчиво. Электрон одной из внешних оболочек может заполнить эту вакансию, и атом при этом переходит в конечное состояние с меньшей энергией (состояние с вакансией во внешней оболочке).

Избыток энергии атом может испустить в виде фотона характеристического излучения. Поскольку энергия Е 1 начального и Е 2 конечного состояний атома квантованы, возникает линия рентгеновского спектра с частотой n=(Е 1 - Е 2)/h, где h постоянная Планка.

Все возможные излучательные квантовые переходы атома из начального K-состояния образуют наиболее жёсткую (коротковолновую) K-серию. Аналогично образуются L-, M-, N-серии (рис. 1).

Рис. 1. Схема K-, L-, M-уровней атома и основные линии K-, L-серий

Зависимость от вещества проявляется только в том, что с увеличением порядкового номера элемента в системе Менделеева весь его характеристический рентгеновский спектр смещается в сторону более коротких волн. Г. Мозли в 1913 г. показал, что квадратный корень из частоты (или обратной длины волны) данной спектральной линии связан линейной зависимостью с атомным номером элемента Z. Закон Мозли сыграл весьма важную роль в физическом обосновании периодической системы Менделеева.

Другой весьма важной особенностью характеристических спектров рентгеновских лучей является то обстоятельство, что каждый элемент даёт свой спектр независимо от того, возбуждается ли этот элемент к испусканию рентгеновских лучей в свободном состоянии или в химическом соединении. Эта особенность характеристического спектра рентгеновских лучей используется для идентификации различных элементов в сложных соединениях и является основой рентгеноспектрального анализа.

Рентгеноспектральный анализ

Рентгеноспектральный анализ это раздел аналитической химии, использующий рентгеновские спектры элементов для химического анализа веществ. Рентгеноспектральный анализ по положению и интенсивности линий характеристического спектра позволяет установить качественный и количественный состав вещества и служит для экспрессного неразрушающего контроля состава вещества.

В рентгеновской спектроскопии для получения спектра используется явление дифракции лучей на кристаллах или, в области 15-150 Å, на дифракционных штриховых решётках, работающих при малых (1-12°) углах скольжения. Основой рентгеновской спектроскопии высокого разрешения является закон Вульфа-Брэга, который связывает длину волны рентгеновских лучей l, отраженных от кристалла в направлении q, с межплоскостным расстоянием кристалла d.

Угол q называется углом скольжения. Он направлением падающих на кристалл или отражённых от него лучей с отражающей поверхностью кристалла. Число n характеризует так называемый порядок отражения, в котором при заданных l и d может наблюдаться дифракционный максимум.

Частота колебания рентгеновских лучей (n=с/l), испущенных каким-либо элементом, линейно связана с его атомным номером:

Ö n/R=A(Z-s) (2)

где n - частота излучения, Z – атомный номер элемента, R – постоянная Ридберга, равная 109737,303 см -1 , s - средняя константа экранирования, в небольших пределах, зависящая от Z, А – постоянная для данной линии величина.

Рентгеноспектральный анализ основан на использовании зависимости частоты излучения линий характеристического спектра элемента от их атомного номера и связи между интенсивностью этих линий и числом атомов, принимающих участие в излучении.

Рентгеновское возбуждение атомов вещества может возникать в результате бомбардировки образца электронами больших энергий или при его облучении рентгеновскими лучами. Первый процесс называется прямым возбуждением, последний – вторичным или флуоресцентным. В обоих случаях энергия электрона или кванта первичной рентгеновской радиации, бомбардирующих излучающий атом, должна быть больше энергии, необходимой для вырывания электрона из определённой внутренней оболочки атома. Электронная бомбардировка исследуемого вещества приводит к появлению не только характеристического спектра элемента, но и, как правило, достаточно интенсивного непрерывного излучения. Флуоресцентное излучение содержит только линейчатый спектр.

В ходе первичного возбуждения спектра происходит интенсивное разогревание исследуемого вещества, отсутствующее при вторичном возбуждении. Первичный метод возбуждения лучей предполагает помещение исследуемого вещества внутрь откачанной до высокого вакуума рентгеновской трубки, в то время как для получения спектров флуоресценции исследуемые образцы могут располагаться на пути пучка первичных рентгеновских лучей вне вакуума и легко сменять друг друга. Поэтому приборы, использующие спектры, флуоресценции (несмотря на то, что интенсивность вторичного излучения в тысячи раз меньше интенсивности лучей, полученных первичным методом), в последнее время почти полностью вытеснили из практики установки, в которых осуществляется возбуждение рентгеновских лучей с помощью потока быстрых электронов.

Аппаратура для рентгеноспектрального анализа.

Рентгеновский флуоресцентный спектрометр (рис 2) состоит из трёх основных узлов: рентгеновской трубки, излучение которой возбуждает спектр флуоресценции исследуемого образца, кристалла – анализатора для разложения лучей в спектр и детектора для измерения интенсивности спектральных линий.

Рис. 2. Схема рентгеновского многоканального флуоресцентного спектрометра с плоским (а) изогнутым (б) кристаллами: 1 – рентгеновская трубка; 2 – анализируемый образец; 3 – диафрагма Соллера; 4 – плоский и изогнутый (радиус – 2R) кристалл – анализаторы; 5 – детектор излучения; 6 – так называемый монитор, дополнительное регистрирующее устройство, позволяющее осуществлять измерение относительной интенсивности спектральных линий при отсутствии стабилизации интенсивности источника рентгеновского излучения; R – радиус так называемой окружности изображения.

В наиболее часто используемой на практике конструкции спектрометра источник излучения и детектор располагаются на одной окружности, называемой окружностью изображения, а кристалл – в центре. Кристалл может вращаться вокруг оси, проходящей через центр этой окружности. При изменении угла скольжения на величину q детектор поворачивается на угол 2q

Наряду со спектрометрами с плоским кристаллом широкое распространение получили фокусирующие рентгеновские спектрометры, работающие «на отражение» (методы Капицы – Иоганна и Иогансона) и на «прохождение» (методы Коуша и Дю-Монда). Они могут быть одно- и многоканальными. Многоканальные, так называемые рентгеновские квантометры, аутрометры и другие, позволяют одновременно определять большое число элементов и автоматизировать процесс анализа. обычно они снабжаются специальными рентгеновскими трубками и устройствами, обеспечивающими высокую степень стабилизации интенсивности рентгеновских лучей. Область длин волн, в которой может использоваться спектрометр, определяется межплоскостным расстоянием кристалла – анализатора (d). В соответствии с уравнением (1) кристалл не может «отражать» лучи, длина волн, которых превосходит 2d.

Число кристаллов, используемых в рентгеноспектральном анализе, довольно велико. Наиболее часто применяют кварц, слюду, гипс и LiF.

В качестве детекторов рентгеновского излучения, в зависимости от области спектра, с успехом используют сётчики Гейгера, пропорциональные, кристаллические и сцинтилляционные счётчики квантов.

Применение рентгеноспектрального анализа.

Рентгеноспектральный анализ может быть использован для количественного определения элементов от Mg 12 до U 92 в материалах сложного химического состава – в металлах и сплавах, минералах, стекле, керамике, цементах, пластмассах, абразивах, пыли и различных продуктах химических технологий. Наиболее широко рентгеноспектральный анализ применяют в металлургии и геологии для определения макро- (1-100%) и микрокомпонентов (10 -1 – 10 -3 %).

Иногда для повышения чувствительности рентгеноспектрального анализа его комбинируют с химическими и радиометрическими методами. Предельная чувствительность рентгеноспектрального анализа зависит от атомного номера определяемого элемента и среднего атомного номера определяемого образца. Оптимальные условия реализуются при определении элементов среднего атомного номера в образце, содержащем лёгкие элементы. Точность рентгеноспектрального анализа обычно 2-5 относительных процента, вес образца – несколько граммов. Длительность анализа от нескольких минут до 1 – 2 часов. Наибольшие трудности возникают при анализе элементов с малым Z и работе в мягкой области спектра.

На результаты анализа влияют общий состав пробы (поглощение), эффекты селективного возбуждения и поглощения излучения элементами – спутниками, а также фазовый состав и зернистость образцов.

Рентгеноспектральный анализ хорошо зарекомендовал себя при определении Pb и Br в нефти и бензинах, серы в газолине, примесей в смазках и продуктах износа в машинах, при анализе катализаторов, при осуществлении экспрессных силикатных анализов и других.

Для возбужения мягкого излучения и его использования в анализе успешно применяется бомбардировка образцов a-частицами (например от полониевого источника).

Важной областью применения рентгеноспектрального анализа является определение толщины защитных покрытий без нарушения поверхности изделий.

В тех случаях, когда не требуется высокого разрешения в разделении характеристического излучения от образца и анализируемые элементы отличаются по атомному номеру более чем на два, с успехом может быть применён бескристальный метод рентгеноспектрального анализа. В нём используется прямая пропорциональность между энергией кванта и амплитудой импульса, который создаётся им в пропорциональном или сцинтилляционном счётчиках. Это позволяет выделить и исследовать импульсы, соответствующие спектральной линии элемента с помощью амплитудного анализатора.

Важным методом рентгеноспектрального анализа является анализ микрообъёмов вещества.

Основу микроанализатора (рис. 3) составляет микрофокусная рентгеновская трубка, объединённая с оптическим металл - микроскопом.

Специальная электронно–оптическая система формирует тонкий электронный зонд, который бомбардирует небольшую, примерно 1 –2 мк, область исследуемого шлифа, помещённого на аноде, и возбуждает рентгеновские лучи, спектральный состав которых далее анализируется с помощью спектрографа с изогнутым кристаллом. Такой прибор позволяет проводить рентгеноспектральный анализ шлифа «в точке» на несколько элементов или исследовать распределение одного из них вдоль выбранного направления. В созданных позднее растровых микроанализаторах электронный зонд обегает заданную площадь поверхности анализируемого образца и позволяет наблюдать на экране монитора увеличенную в десятки раз картину распределения химических элементов на поверхности шлифа. Существуют как вакуумные (для мягкой области спектра), так и не вакуумные варианты таких приборов. Абсолютная чувствительность метода 10 -13 –10 -15 грамм. С его помощью с успехом анализируют фазовый состав легированных сплавов и исследуют степень их однородности, изучают распределения легирующих добавок в сплавах и их перераспределение в процессе старения, деформации или термообработки, исследуют процесс диффузии и структуры диффузионных и других промежуточных слоёв, изучают процессы, сопровождающие обработку и пайку жаропрочных сплавов, а также исследуют неметаллические объекты в химии, минералогии и геохимии. В последнем случае на поверхности шлифов предварительно напыляют тонкий слой (50-100Å) алюминия, бериллия или углерода.

Рис. 3. Схема рентгеновского микроанализатора Кастена и Гинье:

1 – электронная пушка; 2 – диафрагма; 3 – первая собирающая электростатическая линза; 4 – апертурная диафрагма; 5 – вторая собирающая электростатическая линза; 6 – исследуемый образец; 7 – рентгеновский спектрометр; 8 – зеркало; 9 – объектив металлографического оптического микроскопа; ВН – высокое напряжение.

Самостоятельным разделом рентгеноспектрального анализа является исследование тонкой структуры рентгеновских спектров поглощения и эмиссии атомов в химических соединениях и сплавах. Детальное изучение этого явления открывает пути для экспериментального исследования характера междуатомного взаимодействия в химических соединениях, металлах и сплавах и изучения энергетической структуры электронного спектра в них, определения эффективных зарядов, сосредоточенных на различных атомах в молекулах, и решения других вопросов химии и физики конденсированных сред.

Рентгеноструктурный анализ

Рентгеноструктурный анализ это метод исследования строения тел, использующий явление дифракции рентгеновских лучей, метод исследования структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения. Дифракционная картина зависит от длины волны используемых рентгеновских лучей и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны ~1Å, т.е. порядка размеров атома.

Методами рентгеноструктурного анализа изучают металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные материалы, жидкости и газы, молекулы белков, нуклеиновых кислот и т.д. Рентгеноструктурный анализ является основным методом определения структуры кристаллов. При исследовании кристаллов он даёт наибольшую информацию. Это обусловлено тем, что кристаллы обладают строгой периодичностью строения и представляют собой созданною самой природой дифракционную решётку для рентгеновских лучей. Однако он доставляет ценные сведения и при исследовании тел с менее упорядоченной структурой, таких, как жидкости, аморфные тела, жидкие кристаллы, полимеры и другие. На основе многочисленных уже расшифрованных атомных структур может быть решена и обратная задача: по рентгенограмме поликристаллического вещества, например легированной стали, сплава, руды, лунного грунта, может быть установлен кристаллический состав этого вещества, то есть выполнен фазовый анализ.

В ходе рентгеноструктурного анализа исследуемый образец помещают на пути рентгеновских лучей и регистрируют дифракционную картину, возникающую в результате взаимодействия лучей с веществом. На следующем этапе исследования анализируют дифракционную картину и расчётным путём устанавливают взаимное расположение частиц в пространстве, вызвавшее появление данной картины.

Рентгеноструктурный анализ кристаллических веществ распадается на два этапа.

Определение размеров элементарной ячейки кристалла, числа частиц (атомов, молекул) в элементарной ячейке и симметрии расположения частиц (так называемой пространственной группы). Эти данные получают путём анализа геометрии расположения дифракционных максимумов.

Расчёт электронной плотности внутри элементарной ячейки и определение координат атомов, которые отождествляются с положением максимумов электронной плотности. Эти данные получают анализом интенсивности дифракционных максимумов.

Методы рентгеновской съёмки кристаллов.

Существуют различные экспериментальные методы получения и регистрации дифракционной картины. В любом случае имеется источник рентгеновского излучения, система для выделения узкого пучка рентгеновских лучей, устройство для закрепления и ориентирования образца в пучке и приёмник рассеянного образцом излучения. Приёмником служит фотоплёнка, либо ионизационные или сцинтилляционные счётчики рентгеновских квантов. Метод регистрации с помощью счётчиков (дифрактометрический) обеспечивает значительно более высокую точность определения интенсивности регистрируемого излучения.

Из условия Вульфа – Брэгга непосредственно следует, что при регистрации дифракционной картины один из двух входящих в него параметров ¾ l -длина волны или q -угол падения, должен быть переменным.

Основными рентгеновской съёмки кристаллов являются: метод Лауэ, метод порошка (метод дебаеграмм), метод вращения и его разновидность – метод качания и различные методы рентгенгониометра.

В методе Лауэ на монокристаллический образец падает пучок немонохроматических («белых») лучей (рис. 4 а). Дифрагируют лишь те лучи, длины волн которых удовлетворяют условию Вульфа – Брэгга. Дифракционные пятна на лауграмме (рис.4 б) располагаются по эллипсам, гиперболам и прямым, обязательно проходящим через пятно от первичного пучка.

Рис. 4. а – Схема метода рентгеновской съёмки по Лауэ: 1- пучок рентгеновских лучей, падающих на монокристаллический образец; 2 – коллиматор; 3 – образец; 4 – дифрагированные лучи; 5 – плоская фотоплёнка;

б – типичная лауэграмма.

Важное свойство лауэграммы состоит в том, что при соответствующей ориентировке кристалла симметрия расположения этих кривых отражает симметрию кристалла. По характеру пятен на лауэграммах можно выявить внутренние напряжения и некоторые другие дефекты кристаллической структуры. Индицирование же отдельных пятен лауэграммы весьма затруднительно. Поэтому метод Лауэ применяют исключительно для нахождения нужной ориентировки кристалла и определения его элементов симметрии. Этим методом проверяют качество моно кристаллов при выборе образца для более полного структурного исследования.

В методе порошка (рис 5.а), так же как и во всех остальных описываемых ниже методах рентгеновской съёмки, используется монохроматическое излучение. Переменным параметром является угол q падения так как в поликристаллическом порошковом образце всегда присутствуют кристаллики любой ориентации по отношению к направлению первичного пучка.

Рис 5.а – схема рентгеновской съёмки по методу порошка: 1 – первичный пучок; 2 – порошковый или поликристаллический образец; 3 – фотоплёнка, свёрнутая по окружности; 4 – дифракционные конусы; 5 – «дуги» на фотоплёнке, возникающие при пересечении её поверхности с дифракционными конусами;

б – типичная порошковая рентгенограмма (дибаеграмма).

Лучи от всех кристалликов, у которых плоскости с данным межплоскостным расстоянием d hk1 находятся в «отражающем положении», то есть удовлетворяют условию Вульфа – Брэгга, образуют вокруг первичного луча конус с углом растра 4q. Каждому d hk1 соответствует свой дифракционный конус. Пересечение каждого конуса дифрагированных рентгеновских лучей с полоской фотоплёнки, свёрнутой в виде цилиндра, ось которого проходит через образец, приводит к появлению на ней следов, имеющих вид дужек, расположенных симметрично относительно первичного пучка (рис. 5.б). Зная расстояния между симметричными «дугами», можно вычислить соответствующие им межплоскостные расстояния d в кристалле.

Метод порошка наиболее прост и удобен с точки зрения техники экспермента, однако единственная поставляемая им информация – выбор межплоскостных расстояний – позволяе расшифровывать самы простые структуры.

В методе вращения (рис. 6.а) переменным параметром является угол q.

Съёмка производится на цилиндрическую фотоплёнку. В течение всего времени экспозиции кристалл равномерно вращается вокруг свей оси, совпадающей с каким-либо важным кристаллографическим направлением и с осью образуемого планкой цилиндра. Дифракционные лучи идут по образующим конусов, которые при пересечении с плёнкой дают линии, состоящие из пятен (так называемые слоевые линии (рис. 6.б).

Метод вращения даёт экспериментатору более богатую информацию, чем метод порошка. По расстояниям между слоевыми линиями можно рассчитать период решётки в направлении оси вращения кристалла.

Рис. 6.а – схема рентгеновской съёмки по методу вращения: 1 – первичный пучок;

2 – образец (вращается по стрелке); 3 – фотоплёнка цилиндрической формы;

б – типичная рентгенограмма вращения.

В рассматриваемом методе упрощается индицирование пятен рентгенограммы. Так если кристалл вращается вокруг оси с решётки, то все пятна на линии, проходящей через след первичного луча, имеют индексы (h,k,0), на соседних с ней слоевых линиях – соответственно (h,k,1) и (h,k,1 ¯) и так далее. Однако и метод вращения не даёт всей возможной информации, так никогда неизвестно, при каком угле поворота кристалла вокруг оси вращения образовалось то или иное дифракционное пятно.

В методе качания, который является разновидностью метода вращения, образец не совершает полного вращения, а «качается» вокруг той же оси в небольшом угловом интервале. Это облегчает индицирование пятен, так как позволяет как бы получать рентгенограмму вращения по частям и определять с точностью до величины интервала качания, под каким углом поворота кристалла к первичному пучку возникли те или иные дифракционные пятна.

Наиболее богатую информацию дают методы рентгеногониометра. Рентгеновский гониометр, прибор, с помощью которого можно одновременно регистрировать направление дифрагированных на исследуемом образце рентгеновских лучей и положение образца в момент возникновения дифракции. Один из них – метод Вайссенберга, является дальнейшим развитием метода вращения. В отличие от последнего, в рентгеногониометре Вайссенберга (рис. 7) все дифракционные конусы, кроме одного, закрываются цилиндрической ширмой, а пятна оставшегося дифракционного конуса (или, что то же, слоевой линии) «разворачиваются» на всю площадь фотоплёнки путём её возвратно-поступательного осевого перемещения синхронно с вращением кристалла. Это позволяет определить, при какой ориентации кристалла возникло каждое пятно вассенбергограммы.

Рис. 7. Принципиальная схема рентгенгониометра Вайссенберга: 1 – неподвижная ширма, пропускающая только один дифракционный конус; 2 – кристалл, поворачивающийся вокруг оси Х – Х; 3 – цилиндрическая фотоплёнка, двигающаяся поступательно вдоль оси Х – Х синхронно с вращением кристалла 2; 4 – дифракционный конус, пропущенный ширмой; 5 – первичный пучок.

Существуют и другие методы съёмки, в которых применяется одновременное синхронное движение образца и фотоплёнки. Важнейшими из них являются метод фотографирования обратной решётки и прецессионный метод Бюргера. Во всех этих методах использована фотографическая регистрация дифракционной картины. В рентгеновском дифрактометре можно непосредственно измерять интенсивность дифракционных отражений с помощью пропорциональных, сцинтилляционных и других счётчиков рентгеновских квантов.

Применение рентгеноструктурного анализа.

Рентгеноструктурный анализ позволяет объективно устанавливать структуру кристаллических веществ, в том числе таких сложных, как витамины, антибиотики, координационные соединения и т.д. Полное структурное исследование кристалла часто позволяет решить и чисто химические задачи, например установление или уточнение химической формулы, типа связи, молекулярного веса при известной плотности или плотности при известном молекулярном весе, симметрии и конфигурации молекул и молекулярных ионов.

Рентгеноструктурный анализ с успехом применяется для изучения кристаллического состояния полимеров. Ценные сведения даёт рентгеноструктурный анализ и при исследовании аморфных и жидких тел. Рентгенограммы таких тел содержат несколько размытых дифракционных колец, интенсивность которых быстро падает с увеличением q. По ширине, форме и интенсивности этих колец можно делать заключения об особенностях ближнего порядка в той или иной конкретной жидкой или аморфной структуре.

Важной областью применения рентгеновских лучей является рентгенография металлов и сплавов, которая превратилась в отдельную отрасль науки. Понятие «рентгенография» включает в себя, наряду с полным или частичным рентгеноструктурным анализом, также и другие способы использования рентгеновских лучей – рентгеновскую дефектоскопию (просвечивание), рентгеноспектральный анализ, рентгеновскую микроскопию и другое. Определены структуры чистых металлов и многих сплавов. основанная на рентгеноструктурном анализе кристаллохимия сплавов – один из ведущих разделов металловедения. Ни одна диаграмма состояния металлических сплавов не может считаться надёжно установленной, если данные сплавы не исследованы методами рентгеноструктурного анализа. Благодаря применению методов рентгеноструктурного анализа оказалось возможным глубоко изучить структурные изменения, протекающие в металлах и сплавах при их пластической и термической обработке.

Методу рентгеноструктурного анализа свойственны и серьёзные ограничения. Для проведения полного рентгеноструктурного анализа необходимо, чтобы вещество хорошо кристаллизовалось и давало достаточно устойчивые кристаллы. Иногда необходимо проводить исследование при высоких или низких температурах. Это сильно затрудняет проведение эксперимента. Полное исследование очень трудоёмко, длительно и сопряжено с большим объёмом вычислительной работы.

Для установления атомной структуры средней сложности (~50- 100 атомов в элементарной ячейке) необходимо измерять интенсивности нескольких сотен и даже тысяч дифракционных отражений. Эту весьма трудоёмкую и кропотливую работу выполняют автоматические микроденситомеры и дифрактометры, управляемые ЭВМ, иногда в течение нескольких недель и даже месяцев (например, при анализе структур белков, когда число отражений возрастает до сотен тысяч). В связи с этим в последние годы для решения задач рентгеноструктурного анализа получили широкое применение быстродействующие ЭВМ. Однако даже с применением ЭВМ определение структуры остаётся сложной и трудоёмкой работой. Применение в дифрактометре нескольких счётчиков, которые могут параллельно регистрировать отражения, время эксперимента удаётся сократить. Дифрактометрические измерения превосходят фоторегистрацию по чувствительности и точности.

Позволяя объективно определить структуру молекул и общий характер взаимодействия молекул в кристалле, исследование методом рентгеноструктурного анализа не всегда даёт возможность с нужной степенью достоверности судить о различиях в характере химических связей внутри молекулы, так как точность определения длин связей и валентных углов часто оказывается недостаточной для этой цели. Серьёзным ограничением метода является также трудность определения положений лёгких атомов и особенно атомов водорода.

Список литературы

Жданов Г.С. Физика твёрдого тела, М., 1962.

Блохин М.А., Физика рентгеновских лучей, 2 изд., М., 1957.

Блохин М.А., Методы рентгеноспектральных исследований, М., 1959.

Ванштейн Э.Е., Рентгеновские спектры атомов в молекулах химических соединений и в сплавах, М.-Л., 1950.

Бокай Г.Б., Порай-Кошиц М.А., Рентгеноструктурный анализ, М., 1964.

Шишаков Н.А., Основные понятия структурного анализа, М., 1961.

1895 год оказался исключительно важным сперва для науки, а вскоре и для всего мира - именно тогда впервые открыли рентгеновские лучи, без которых сегодня нашу жизнь представить очень сложно. Слово страшное, все его боятся: это изучение, которое убивает! А после катастроф на АЭС и вовсе кровь в жилах стынет. Впрочем, про трагедии наслышаны все, а вот о пользе, которую это открытие дало людям, знают немногие. И речь идет не только лишь о специальных снимках - едва ли единственном эффективном методе выявления многих патологий. Еще одна область применения лучей - рентгеноструктурный анализ металлов, белков, иных соединений.

О чем идет речь

Рентгеновские лучи - электромагнитные колебания. Отличительная особенность - маленькая длина, сопоставимая с атомными габаритами. Источник излучения - быстрые электроны, влияющие на атомную структуру. В настоящее время излучение нашло себе применение в научно-техническом секторе.

Особенности лучей выявили в 1912 в ходе испытаний, проводимых немецкими учеными Книппингом, Фридрихом, Лауэ. При обследовании атомной решетки был установлен факт дифракции. Если сформировать узкий лучевой пучок и направить его на кристалл, обеспечив ему неподвижность, можно получить фракционную картинку на фотографической пластинке, размещенной позади кристалла. Отражение, полученное таким образом, представляло собой упорядоченную систему пятен, каждое из которых было следом определённого луча, рассеявшегося под влиянием кристалла. Изображение было решено назвать лауэграммой. Она легла в основу рентгеноструктурного анализа кристаллов, развивающегося и совершенствующегося в современности.

Тайны vs. наука

Применённый в биологии рентгеноструктурный анализ позволил проникнуть в тайную суть жизни. Впрочем, стоит отметить, что фундаментом для всего выступила квантовая физика - именно она дает обоснование явлениям, которые мы сейчас познаем с помощью рентгеновских лучей. Известно, что окружающее пространство, тела, предметы сформированы молекулами, атомами, сложенными в разные систематизированные, упорядоченные структуры. Выявление особенностей конкретного вещества может быть проведено только экспериментальным путем. В наши дни применение рентгеноструктурного анализа - эффективный, точный, современный способ определения атомного строения.

Для получения полезной информации необходимо использовать экспериментальные установки, где «работать» заставляют волны, чья длина - десять в минус десятой степени (!) метра. Именно таков масштаб расстояний на атомарном уровне. Для обывателя, далекого от физики, даже представить себе столь крошечные величины не представляется возможным - но ученые не просто смогли их разглядеть, но и проанализировали, заставили работать и производить еще больше информации, необходимой человечеству для познания окружающего мира и законов его построения.

Структуры и методики

Эксперименты 1912 года позволили сформулировать основные принципы рентгеноструктурного анализа, так как ученые получили эффективный метод выявления положения молекул, атомов внутри кристалла. Со временем также удалось собрать информацию о внутреннем строении молекул. Новые сведения быстро привлекли внимание самых светлых умов того времени, и за работу над еще только развивающимся рентгеноструктурным анализом взялись два британских ученых, отец и сын Брэгги. Именно они создали метод, благодаря которому человечество получило возможность очень точно определять молекулярную, минеральную структуру.

Со временем в фокусе внимания ученых оказывались все более сложные объекты, но рентгеноструктурный анализ показал себя на удивление универсальным. Постепенно очередь дошла до живых молекул. Сложно вообразить, насколько значим в настоящее время метод рентгеноструктурного анализа в биологии. Практически сразу ученые столкнулись со многочисленными сложностями, и в первую очередь - проблемой выделения кристаллов. Одна молекула - это несколько десятков тысяч атомов, что давало на снимке столь запутанное изображение, что восстановление координат не представлялось возможным. Но это только поначалу: годы шли, метод совершенствовался, в настоящее время эта задача уже решена.

Рентгеноструктурный анализ белков

Наиболее значимые исследования, связанные с этой тематикой, были организованы в Кавендишской лаборатории. Руководил ими уже упомянутый выше британец Брэгг. В качестве технического задания сформулировали задачу выявления белкового пространственного строения. Такая цель была закономерной: в середине прошлого столетия бытовало мнение, что самая важная для живого мира молекула - это белок. Для объяснения идеи аргументом был факт химических реакций, провоцируемых в клетке - ферментами, стимулирующими их, бывают только белки. Из этого ученые сделали закономерный вывод, что белок представляет собой основной строительный материал живой клетки, и освоение всех особенностей его структуры дало бы ответ на любые вопросы, связанные с фактом жизни. А изучить строение должен был помочь метод рентгеноструктурного анализа.

Итак, в центре внимания оказался сложный полимер - белок, звенья которого - мономеры, остатки аминокислот. Исследования показали, что таковые всегда линейны, а структура постоянна при повышении температур даже до того уровня, когда биологическая активность полностью угнетается. На основании полученных сведений стало ясно, что только остатки аминокислот в правильной последовательности еще не могут обеспечить возможность жизни, нужна также правильная компоновка групп в пространстве.

Успех не за горами

Примененный в лабораторных условиях рентгеноструктурный анализ помог решить поставленную перед учеными задачу. Успех пришел в середине пятидесятых, а первооткрывателями стали Перуц, Кендрю. Благодаря им в настоящее время мир знает, что белок имеет трехмерную структуру. Не менее важна и прочая информация, полученная разными учеными в ходе исследований и испытаний в попытке достичь поставленной цели. Многие данные, полученные в то время, в будущем помогли избежать ошибок и сделать более простым рентгеноструктурный анализ клетки.

В настоящее время посредством разработанной технологии можно изучить атом любого вещества и определить все специфические особенности элементарной ячейки, включая расположение в пространстве, форму, габариты. Рентгеноструктурный анализ позволяет выявить кристаллическую группу симметрии. В наши дни этот способ определения структуры вещества распространён шире любых других, что обусловлено его относительно низкой стоимостью, простотой реализации.

Рентгеновские спектры

Это понятие - одно из ключевых для теории рентгеноструктурного анализа. Принято говорить о двух типах: характеристическом, тормозном излучении. Тормозное обусловлено соответствующим движением электронов. Спровоцировать в лабораторных условиях это явление можно, если активировать антикатод установки. Ученый получает доступ к ограниченному широкому спектру. Каким образом будет расположена граница, от вещества не зависит, это полностью обусловлено энергетическими запасами направленных электронов. Тормозной спектр становится интенсивнее, если направленные частицы легче, а возбуждение электронов позволяет добиться очень высоких величин.

Используемое в методе рентгеноструктурного анализа характеристическое излучение сопровождается перемещением электронов. Расположенная на внутреннем атомном слое частица выбивается, с внешнего слоя заряженная частица переходит внутрь, весь процесс сопровождается определённой характеристикой - специфическим спектром, который во многом сходен с присущими газообразным веществам. Принципиальное отличие этих спектров - в зависимости (или ее отсутствии в случае рентгеновского изучения) от элемента, провоцирующего образование явления.

Рентген, результат и объект

Как показали испытания, проведенные с использованием различных соединений, рентгеноструктурный анализ в некоторой степени определяется его особенностью, отраженной через порядковый номер менделеевской таблицы: чем это значение больше, тем сильнее смещение к коротковолновому спектру. В 1913 было доказано: извлеченный из значения частоты квадратный корень линейно привязан к атомарному номеру. В будущем эта закономерность использовалась для обоснования менделеевской таблицы.

Следует учитывать, что разные элементы обладают разным спектром. При этом не наблюдается зависимости от возбуждаемости для испускания рентгеновского свечения в свободной форме, соединении с другими химическими элементами. На основании данных стало возможным проводить рентгеноструктурный анализ применительно к сложноструктурированных объектам. Выявленные спецификации стали базовыми для определения специфичности аналитического метода, сегодня обширно применяются.

Рентгеноструктурный анализ: теория и практика

В настоящее время эту методику анализа классифицируют как химический раздел, применимый для анализа вещественного состава. Интенсивность излучения определяется числом атомов, задействованных в процессе. Возбуждение провоцируется электронной бомбардировкой, облучением. В первом случае говорят о прямом возбуждении, при воздействии рентгеновских лучей - флуоресцентном (вторичном). Квант первичной радиации должен иметь энергетические запасы, превышающие расходы на выбивание электрона с занимаемой им позиции. Бомбардировка становится причиной специфического спектра и излучения - непрерывного, с высокой интенсивностью. Если предполагается вторичное возбуждение, тогда результат содержит линейчатый спектр.

Первичная возбуждаемость сопровождается нагревом субстанции. Флуоресцентное не провоцирует такого эффекта. При первичном методе веществом наполняют трубку, где создается высокий вакуум, а для флуоресцентной методологии необходимо расположить объект на пути рентгеновского излучения. Условие вакуума здесь не играет роли. Это довольно удобно: исследовав один объект, можно убрать образец и поместить следующий, процедура простая и практически не требует времени. В то же время вторичное излучение по интенсивности в тысячи раз слабее в сравнении с первичным методом. Тем не менее метод рентгеноструктурного анализа клетки обычно производится с применением именно вторичного, флуоресцентного излучения, предполагающего наличие быстрых электронов.

Что используется?

Для проведения анализа необходимо иметь в своем распоряжении специальный прибор. Полнопрофильный рентгеноструктурный анализ реализуется при помощи дифрактометра. Существует также флуоресцентный спектрометр. Этот прибор сформирован тремя ключевыми узлами: трубкой, анализатором, детектором. Первая является источником излучения, влияющего на флуоресцентный спектр исследуемого материала. Анализатор необходим, чтобы получить спектр. Детектор передает информацию об интенсивности, следующий шаг - фиксация результатов эксперимента.

На практике довольно часто используется такой спектрометр: излучающий источник, детектор расположены на специализированной окружности, центральное место принадлежит способному вращаться вокруг собственной оси кристаллу. Фактически ось пронизывает центр окружности.

Фокусирующий спектрометр

Как можно заключить из доступной для широкого круга лиц информации, в настоящее время методы, программы полнопрофильного рентгеноструктурного анализа труднодоступны, поэтому реальное широкое применение на практике не получили. Отмечается, что гораздо более актуальный вариант - это метод отражения, изобретённый Иоганном, Иогансоном и Капицей. Предполагается применение специализированного спектрометра. Альтернативный вариант - технология, авторами которой выступаю Коуш, Дю-Монд. Этот вариант именуется «на прохождение».

Указанные широко используемые в настоящее время методики бывают с одним либо многочисленными каналами. Многоканальные квантометры, аутрометры - это эффективный метод выявления многочисленных элементов. Сама работа, связанная с анализом, при применении такой технологии автоматизируется до высокого уровня. Преимущественно приборы оснащены трубками, устройствами, благодаря которым становится достижима повышенная стабилизационная степень интенсивности изучения. Спектрометр использует волны из диапазона, определённого анализатором. Для его плоскостей характерно некоторое конкретное расстояние, и невозможно отражение таких лучей, длина которых вдвое или больше, нежели межплоскостное анализатора.

Особенности реализации

В настоящее время используются самые разные элементы в качестве кристаллов. Наибольшее распространение получили слюда, гипс, кварц. Детекторами выступают гейгеровские счетчики, а также специализированные кристаллические, пропорциональные. В последнее время все активнее используются так называемые квантовые сцинтилляционные счётчики.

Из объектов, которые исследуются разными приборами, довольно часто внимание научных сотрудников привлекают ферриты висмута. Полнопрофильный рентгеноструктурный анализ BiFeO3 уже не раз становился главной темой научных работ в области химии, предполагается, что некоторые аспекты еще только предстоит открыть.

Область применения

Рентгеноспектральный анализ позволяет определять, как много в некотором соединении содержится целевого элемента, вызывающего интерес исследователя. Допускается исследовать сложные составы, сплавы, металлы. Нередко таким образом анализируют керамические, цементные соединения, пластмассовые. Можно исследовать даже пыль либо абразивные компоненты. Химтехнологии дают доступ к широкому спектру разнообразных продуктов, изучить особенности которых можно, прибегнув к рентгеновскому излучению. Самые актуальные области применения анализа - геология, металлургия, где аппаратура используется с целью выявления микроскопических, макроскопических компонентов.

Нет предела совершенству

Не всегда стандартная установка для рентгеноспектрального анализа позволяет получить необходимые сведения относительно исследуемого объекта. Для увеличения показателей чувствительности применимой методики допускается комбинирование нескольких вариантов подходов: радиометрия прекрасно сочетается с химическими способами. Наибольшая чувствительность определяется атомным номером вещества, которое предстоит выявить, а также средним номером образца. Если речь идет о легких элементах, задача считается довольно простой. Точность - 2-5 % (относительных), вес - считанные грамы, длительность - до двух часов, но иногда необходимо всего лишь несколько минут. А вот сложной считается задача, если речь идет о мягком спектре, небольшом Z.

Анализ белков: особенности

Одно из очень важных направлений использования описываемой методики - анализ белков. Как выше было указано, для получения точной информации об исследуемом объекте его необходимо изучать в виде кристалла, но в нормальном состоянии белковая молекула не имеет такой формы. Для проведения анализа необходимо преобразование.

Как это происходит?

Почти любое исследование белка в рамках эксперимента предполагает биохимическую методику добычи исходного вещества. Биологический материал измельчают, переводят белок в растворенное состояние и из общей смеси выделяют необходимый объект, который и будут дальше исследовать. Во многом результативность мероприятия зависит от качества выделения белка.

Чтобы можно был прибегнуть к анализу с использованием рентгеновского излучения, необходимо сформировать кристаллы. Если соединение сложное, рабочий процесс затягивается надолго. Как правило, в качестве исходного состава применяют насыщенный раствор, который затем обрабатывают, и жидкость испаряется. Второй вариант предполагает температурное влияние. Получаемые в итоге компоненты можно исследовать в специальной установке.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ТЕХНИЧЕСКОЙ ХИМИИ

Курсовая работа

«Рентгеноструктурный анализ»

Преподаватель: д.ф.-м.н, проф.Чувыров А.Н.

Студент: Рахимова Н.Т.

Группа: ХФММ-3

1. Введение

2. Историческая справка

3.1 Природа сигналов РСА

7. Литература

1. Введение

Рентгеноструктурный анализ это метод исследования строения тел, использующий явление дифракции рентгеновских лучей, метод исследования структуры вещества по распределению в пространстве и интенсивностям рассеянного на анализируемом объекте рентгеновского излучения. Дифракционная картина зависит от длины волны используемых рентгеновских лучей и строения объекта. Для исследования атомной структуры применяют излучение с длиной волны ~1Е, т.е. порядка размеров атома.

Методами рентгеноструктурного анализа изучают металлы, сплавы, минералы, неорганические и органические соединения, полимеры, аморфные материалы, жидкости и газы, молекулы белков, нуклеиновых кислот и т.д. Рентгеноструктурный анализ является основным методом определения структуры кристаллов. При исследовании кристаллов он даёт наибольшую информацию. Однако он доставляет ценные сведения и при исследовании тел с менее упорядоченной структурой, таких, как жидкости, аморфные тела, жидкие кристаллы, полимеры и другие. На основе многочисленных уже расшифрованных атомных структур может быть решена и обратная задача: по рентгенограмме поликристаллического вещества, например легированной стали, сплава, руды, лунного грунта, может быть установлен кристаллический состав этого вещества, то есть, выполнен фазовый анализ.

В ходе рентгеноструктурного анализа исследуемый образец помещают на пути рентгеновских лучей и регистрируют дифракционную картину, возникающую в результате взаимодействия лучей с веществом. На следующем этапе исследования анализируют дифракционную картину и расчётным путём устанавливают взаимное расположение частиц в пространстве, вызвавшее появление данной картины.

Cуществуют три принципиально различных метода рентгеновской съёмки кристаллов в двух из которых -- методе вращения и методе порошка -- используется монохроматическое излучение, а в третьем -- методе Лауэ -- белый спектр рентгеновских лучей. Разновидностью метода вращения является метод качания кристалла. Кроме того, метод вращения можно подразделить на два вида: в одном случае вращение или качание кристалла происходит при неподвижной пленке (обычный метод вращения или качания), а в другом -- одновременно с вращением кристалла передвигается пленка (методы развертки слоевых линий или, как их часто называют, рентгенгониометрические методы).

К рентгенгониометрическим методам примыкает также дифрактометрический. Основное отличие его состоит в том, что рентгеновские лучи регистрируются не фотографической пленкой, а ионизационным прибором или сцинтилляционным счетчиком.

2. Историческая справка

Дифракция рентгеновских лучей на кристаллах была открыта в 1912 немецкими физиками М. Лауэ, В. Фридрихом и П. Книппингом. Направив узкий пучок рентгеновских лучей на неподвижный кристалл, они зарегистрировали на помещенной за кристаллом фотопластинке дифракционную картину, которая состояла из большого числа закономерно расположенных пятен. Каждое пятно -- след дифракционного луча, рассеянного кристаллом. Рентгенограмма, полученная таким методом, носит название лауэграммы (рис. 1).

дифракция рентгеновский атомный

Рис. 1. Лауэграмма монокристалла NaCI. Каждое пятно представляет собой след рентгеновского дифракционного отражения. Диффузные радиальные пятна в центре вызваны рассеянием рентгеновских лучей на тепловых колебаниях кристаллической решётки.

Разработанная Лауэ теория дифракции рентгеновских лучей на кристаллах позволила связать длину волны л излучения, параметры элементарной ячейки кристалла а, b, с (см. Кристаллическая решётка), углы падающего (a0, b0, g0) и дифракционного (a, b, g) лучей соотношениями:

a (cosa-- cosa0) = hl,

b (cosb -- cosb0) = kl, (1)

c (cosg -- cosg0) =ll,

где h, k, l -- целые числа (миллеровские индексы). Для возникновения дифракционного луча необходимо выполнение приведённых условий Лауэ [уравнений (1)], которые требуют, чтобы в параллельных лучах разность хода между лучами, рассеянными атомами, отвечающими соседним узлам решётки, были равны целому числу длин волн.

В 1913 У. Л. Брэгг и одновременно с ним Г. В. Вульф предложили более наглядную трактовку возникновения дифракционных лучей в кристалле. Они показали, что любой из дифракционных лучей можно рассматривать как отражение падающего луча от одной из систем кристаллографических плоскостей. В том же году У. Г. и У. Л. Брэгги впервые исследовали атомные структуры простейших кристаллов с помощью рентгеновских дифракционных методов. В 1916 П. Дебай и немецкий физик П. Шеррер предложили использовать дифракцию рентгеновских лучей для исследования структуры поликристаллических материалов. В 1938 французский кристаллограф А. Гинье разработал метод рентгеновского малоуглового рассеяния для исследования формы и размеров неоднородностей в веществе.

Применимость рентгеноструктурного анализа к исследованию широкого класса веществ, производственная необходимость этих исследований стимулировали развитие методов расшифровки структур. В 1934 американский физик А. Патерсон предложил исследовать строение веществ с помощью функции межатомных векторов (функции Патерсона). Американские учёные Д. Харкер, Дж. Каспер (1948), У. Захариасен, Д. Сейр и английский учёный В. Кокрен (1952) заложили основы так называемых прямых методов определения кристаллических структур. Большой вклад в развитие патерсоновских и прямых методов рентгеноструктурного анализа внесли Н. В. Белов, Г. С. Жданов, А. И. Китайгородский, Б. К. Вайнштейн, М. Порай-Кошиц (СССР), Л. Полинг, П. Эвальд, М. Бюргер, Дж. Карле, Г. Хауптман (США), М. Вульфсон (Великобритания) и др. Работы по исследованию пространственной структуры белка, начатые в Англии Дж. Берналом (30-е гг.) и успешно продолженные Дж. Кендрю, М. Перуцем, Д. Кроуфут-Ходжкин и другие, сыграли исключительно важную роль в становлении молекулярной биологии. В 1953 Дж. Уотсон и Ф. Крик предложили модель молекулы дезоксирибонуклеиновой кислоты (ДНК), которая хорошо согласовалась с результатами рентгенографических исследований ДНК, полученными М. Уилкинсом.

3. Экспериментальные методы рентгеноструктурного анализа

3.1 Природа сигналов РСА

Для получения информации о пространственном строении вещества, в том числе и полимеров, используют рентгеновское излучение, длина волны которого от 0,1 до 100 Е. На практике для получения сигналов (рефлексов) от полимеров наиболее часто используют медный антикатод и никелевый фильтр, с помощью которого от непрерывного спектра R-излучения выделяется К-линия с длиной волны = 1,54 Е. Исследование полимеров с помощью такого излучения позволяет получить информацию как о молекулярной структуре (дифракция рентгеновских лучей под большими углами), так и о надмолекулярной структуре (дифракция R-лучей под малыми углами).

Понятия «дифракция» и «интерференция» лучей вам известны из курса физики.

РСА основан на явлениях отражения, рассеяния, дифракции и интерференции R-лучей. Дифракция присуща всем видам излучения: при наличии в экране нескольких щелей (дефектов) каждая из них оказывается источником круговых или сферических волн (рис. 1). Эти волны интерферируют (взаимодействуют) друг с другом, взаимно уничтожаясь в одних местах и усиливаясь в других (рис. 2).

В 1913 году отец и сын Брэгг (англичане) и русский ученый Вульф обнаружили, что пучок R-лучей, выходящий из кристалла, ведет себя так как, если бы он был отражен от зеркала, плоскости.

Рассмотрим несколько атомных слоев, расположенных друг от друга на расстоянии, которое соизмеримо или несколько больше, чем излучения. Если на такой объект направить пучок R-лучей, то точка, до которой дойдет электромагнитное излучение, может быть источником отраженного излучения. Положим, угол падения плоской волны, тогда угол отражения будет равен 2.

Рис. 1. Дифракция на одной щели

Рис. 2. Интерференция волн

За счет отражения от разных атомных слоев появляется разность хода, равная, где - целое положительное число, - длина волны падающего и отраженного R-излучения. Из простых геометрических соображений получаем, что разность хода равна

Уравнение (1) принято называть законом Вульфа - Брэгга для дифракции рентгеновских лучей на кристаллах. Схема, иллюстрирующая этот закон, представлена на рис. 3.

Рис. 3. Схема хода падающих и отраженных лучей в кристалле

Для трехмерной решетки с периодом идентичности в каждом направлении, (т.е. для объемной кристаллической решетки) должны выполняться три дифракционных условия, определяющие значения трех углов - 1, 2, 3.

где n, m, k - целые числа.

Однако три угла в пространстве не могут быть выбраны произвольно, поскольку углы между произвольной прямой и тремя взаимно перпендикулярными координатными осями, связаны геометрическим условием

Уравнения (2) и (3) имеют решения, т.е. позволяют рассчитать углы 1, 2, 3 для решетки с заданными параметрами, не при любых длинах волн, а только тех, которые обеспечивают совместимость уравнений (2) и (3). Все остальные волны рассеиваются, не давая максимумов.

Обработка результатов сводится к вычислению размеров периодов идентичности d (межплоскостного расстояния) при известной и экспериментально определенном угле для максимума отраженного излучения. Структурная упорядоченность расположения макромолекул и их частей обуславливает существование нескольких уровней периодичности, характеризуемых своей величиной периода, каждому из которых соответствует своя величина угла максимума отражения.

3.2 Формы представления результатов рентгеноструктурного анализа

Методически РСА выполняется по одному из трех вариантов, отличающихся способом подготовки образца и формой представления результатов.

Метод Лауэ используется для изучения монокристаллов достаточно больших размеров (более 1 мм в периметре). Образец помещается на пути сплошного (полихроматического) рентгеновского излучения, в котором всегда найдется длина волны, которая удовлетворяет уравнениям (2) и (3). Рентгенограмма представляет собой систему пятен (точечных рефлексов) от разных упорядоченностей. Для полимеров этот метод практически не применяется из-за трудностей получения монокристаллов таких размеров.

Метод вращения или качания (метод Брэггов) основан на использовании монокристалла и монохроматического излучения. При вращении или качании кристалл может повернуться такой плоскостью, для которой выполняется закон Вульфа - Брэгга. Всякий раз, когда это случается, возникает соответствующий рефлекс, фиксируемый фотопленкой, размещенной на внутренней стороне цилиндра, в центре которого вращается или качается образец.

Метод порошка наиболее приемлем для полимеров. Для получения рентгенограммы монохроматический пучок R-лучей направляется на поликристаллический образец (порошок). При встрече луча с тем кристалликом, ориентация которого по отношению к падающему излучению удовлетворяет закону Вульфа - Брэгга, происходит дифракция от каждой системы одинаково ориентированных плоскостей. Рентгенограмма получается в виде концентрических окружностей (колец), фиксируемых фотопленкой, расположенной перпендикулярно падающему лучу за образцом.

Рентгенограмму можно записать в виде зависимости интегральной интенсивности любого дифракционного рефлекса от угла 2. На рис.4 приведены условные дифрактограммы для полимеров, имеющих высокую степень кристалличности (а), смешанную структуру (б) и аморфную структуру (в).

Рис. 4. Типичные дифрактограммы полимеров: заштрихованная площадь - аморфное гало; 01, 02, 03 - рефлексы

3.3 Использование результатов рентгеноструктурного анализа для решения проблем в технологии полимеров

Рентгеноструктурный анализа дает представление о строении полимерного материала и его изменении под воздействием различных факторов, связанных с условиями переработки: температуры, нагрузки, ориентирования и др. Контроль структуры полимера в технологии его получения позволяет выбирать оптимальные условия синтеза полимеров с заданными свойствами. В ходе воздействия на полимер можно сразу получать информацию о фазовых переходах и конформациях макромолекул.

Дифракция R-лучей под малыми углами позволяет судить о структурной упорядоченности в расположении макромолекул и их частей в области ближнего и дальнего порядка, о плотности аморфных прослоек и дефектности кристаллических структур. Все это важно для прогнозирования поведения полимера при термомеханических воздействиях в условиях переработки.

Достоинством РСА по сравнению с электронной микроскопией, позволяющей получать подобную информацию о надмолекулярной структуре, является простота подготовки образца в методе порошка, большой объем информации при меньших затратах времени на анализ.

3.4 Функциональная схема прибора и принцип формирования сигнала

Рентгеновские приборы должны отвечать некоторым основным требованиям, которые диктуются законом Вульфа - Брэгга и оптикой R-лучей:

Возможность получения поли- и монохроматического излучения;

Фокусировка пучка;

Обеспечение автоматического выполнения закона;

Усреднение отражения по поверхности образца;

Пропорциональность детектора излучения количеству рентгеновских квантов;

Автоматическая отметка угла дифракции.

На рис. 5 приведена функциональная структура прибора ДРОН-3М.

Рис. 5. Блок-схема прибора ДРОН-3М:

1 - рентгеновская трубка; 2 - образец; 3 - детектор излучения; 4 - механизм гониометра с автоматикой угла дифракции; 5 - система питания; 6 - система охлаждения; 7 - система обработки сигнала детектора; 8 - самописец

Монохроматичность обеспечивается использованием фольги из металла, пропускающего одну длину волны и, по возможности, поглощающего другие длины волн. Таким свойством обладает никелевая фольга, поглощающая на 97 % излучения от медного антикатода и пропускающая с очень малым поглощением = 1,54 Е.

Линз, способных фокусировать R-лучи, пока нет. Поэтому в конструкции прибора используют специальные устройства для выбора и измерения углов - гониометры. В гониометре автоматически поддерживается фокусировка излучения при любом угле дифракции. В нем автоматически выполняется закон Вульфа - Брэгга за счет того, что угловая скорость вращения образца, на который падает излучение, в любой момент времени в 2 раза меньше скорости движения детектора (приемника) излучения. Благодаря этому, в любой момент времени детектор располагается под углом 2 к падающему излучению, а образец под углом.

Усреднение всех расположений плоскостей отражения в образце происходит за счет вращения его вокруг оси, перпендикулярной плоскости отражения.

В качестве детектора сигналов используется сцинтилляционный счетчик с фотоумножителем, имеющий хорошую пропорциональность числу подаваемых на него рентгеновских квантов. На ленте самописца для облегчения расшифровки рентгенограмм автоматически отмечается угол дифракции специальной электронной схемой, связанной с механизмом движения образца, расположенного в гониометре.

4. Расшифровка дифрактограмм и обработка результатов анализа

4.1 Определение размера структурных элементов

При изучении рентгенограмм или дифрактограмм, полученных от образцов различных полимеров или одного полимера, но полученного в различных условиях, было замечено, что одни и те же рентгеновские рефлексы имеют различную ширину. Это объясняется малыми размерами кристаллитов и их дефектностью. Если не учитывать вклад дефектности в расширение сигнала, то можно определить размеры кристаллитов по расширению рефлекса, так как вклад дефектности на порядок ниже.

Под размером кристаллита (L) понимают его эффективный размер, т.е. некоторую величину, характеризующую порядок размеров кристаллита. Величину L можно рассчитать по формуле Шерера

где - размер кристаллита, ангстремы; - длина волны, ангстремы; - расширение линии, радиан; - брэгговский угол, градус; k - коэффициент, зависящий от формы кристаллита.

Величина определяется на уровне половины высоты максимума линии после вычета фона и аморфного гало, если оно находится под пиками кристалличности. Коэффициент k = 0,9, если известна форма кристаллита, и k = 1, если кристалл имеет сферическую форму. В последнем случае L = 0,75D, где D - диаметр сферы. Для порошка, состоящего из однородных зерен объема V, с погрешностью, меньшей 20 %, объем кристалла равен L3 с погрешностью, менее 50 %.

Чтобы получить правильное значение, используют эталон, чаще всего NaCl, с наиболее интенсивным рефлексом при 2 = 31є34 или хорошо закристаллизованный с достаточно большими зернами эталонный образец изучаемого полимера. Для него

где В - ширина линии изучаемого полимера; - ширина линии эталона.

Эталон и исследуемый образец исследуют при одинаковой ширине щели и уменьшении интенсивности первичного пучка для эталона (поправка должна быть достаточно малой). На дифракционной кривой, записанной на диаграммной ленте, ширина линии измеряется в миллиметрах. Для того чтобы применять формулы (4) и (5), необходимо выполнить пересчет. Например, пусть одному угловому градусу на ленте соответствует расстояние 27,3 мм. В свою очередь известно, что одному радиану соответствует примерно 57,3 град. Тогда для L в ангстремах получаем

При 2 =20є, = 1,54 Е, = 2,2 мм. L = 1000 Е, а при
= 220 мм и тех же значениях других параметров L = 10 Е. При
= 220 мм линия очень широкой интенсивности, практически плохо наблюдается, а при = 2,2 мм это предельно измеряемая линия.

Следовательно, границами применения метода являются эффективные размеры кристаллитов от 10 до 1000 Е. Большинство промышленных образцов полимеров имеют размеры кристаллитов 50-500 Е, т.е. в пределах применимости метода РСА. Погрешность измерения составляет 10-20 %.

4.2 Определение степени кристалличности полимеров

РСА позволяет провести фазовый анализ полимеров. Частным случаем рентгеновского фазового анализа является определение, так называемой, рентгеновской степени кристалличности полимеров. Между этой характеристикой и некоторыми свойствами полимеров (плотность, твердость, предел текучести расплава и др.) существует связь. Но изменением только степени кристалличности нельзя объяснить поведение полимеров в различных условиях. Требуются еще дополнительные сведения об изменении надмолекулярной структуры, получаемые другими методами. Рентгеновская степень кристалличности не всегда совпадает с такой же характеристикой, определенной другими методами: ИКС-, ЯМР-спектроскопией, дилатометрией, термическими методами и др.

Степень кристалличности () характеризует долю регулярно упакованных молекул по отношению к полностью неупорядоченным молекулам, т.е. соотношение кристаллической и аморфной фаз в полимере (относительная степень кристалличности), %, вычисляют по формуле

Общую степень кристалличности полимера, %, вычисляют по формуле

где - площадь кристаллической части (над гало); - площадь аморфной части (под гало).

Рис. 6. Деление площади под дифракционной кривой:

Линия фона; - линия гало; 1 - изотактический полистирол; 2 - поли-4-метилпентен-1; 3 - политетрафторэтилен; 4 - полипропиленоксид

Практически на дифрактограмме измеряют площади под кристаллическими пиками и аморфным голо в некотором ограниченном интервале брэгговских углов с учетом поправки на фон и находят соотношение этих площадей. Площади измеряют планиметром, по клеточкам миллиметровой бумаги или весовым методом: взвешивают вырезанные площади и 1 см2 той же бумаги, на которой они нанесены, и из пропорции находят площади каждой фигуры. Примеры деления площадей приведены на рис. 6.

Деление площади под дифракционной кривой на кристаллическую и аморфную часть вызывает определенные трудности и ошибки, которые зависят от формы кривой. При проведении такой процедуры можно воспользоваться эмпирическим критерием Германса, по которому между двумя пиками всегда есть точка, не принадлежащая ни одному из них, если максимумы рефлексов отстоят не менее чем на 2 = 3є друг от друга. Интенсивности кристаллических пиков и аморфного гало следует измерять в возможно большем интервале угла рассеяния.

5. Определение атомной структуры по данным дифракции рентгеновских лучей

Расшифровка атомной структуры кристалла включает: установление размеров и формы его элементарной ячейки; определение принадлежности кристалла к одной из 230 Федоровских (открытых Е. С. Федоровым) групп симметрии кристаллов; получение координат базисных атомов структуры. Первую и частично вторую задачи можно решить методами Лауэ и качания или вращения кристалла. Окончательно установить группу симметрии и координаты базисных атомов сложных структур возможно только с помощью сложного анализа и трудоёмкой математической обработки значений интенсивностей всех дифракционных отражений от данного кристалла. Конечная цель такой обработки состоит в вычислении по экспериментальным данным значений электронной плотности r(х, у, z) в любой точке ячейки кристалла с координатами x, у, z. Периодичность строения кристалла позволяет записать электронную плотность в нём через Фурье ряд:

с(x, y, z) = 1/V ? Fhkl exp [-2рi (hx + ky + lz)], (2)

где V -- объём элементарной ячейки, Fhkl -- коэффициенты Фурье, которые в Р. с. а. называются структурными амплитудами, i = v-1. Каждая структурная амплитуда характеризуется тремя целыми числами hkl и связана с тем дифракционным отражением, которое определяется условиями (1). Назначение суммирования (2) -- математически собрать дифракционные рентгеновские отражения, чтобы получить изображение атомной структуры. Производить таким образом синтез изображения в Р. с. а. приходится из-за отсутствия в природе линз для рентгеновского излучения (в оптике видимого света для этого служит собирающая линза).

Дифракционное отражение -- волновой процесс. Он характеризуется амплитудой, равной ЅFhklЅ, и фазой ahkl (сдвигом фазы отражённой волны по отношению к падающей), через которую выражается структурная амплитуда: Fhkl =ЅFhkl--Ѕ(cosahkl + isinahkl). Дифракционный эксперимент позволяет измерять только интенсивности отражений, пропорциональные ЅFhklЅ2, но не их фазы. Определение фаз составляет основную проблему расшифровки структуры кристалла. Определение фаз структурных амплитуд в принципиальном отношении одинаково как для кристаллов, состоящих из атомов, так и для кристаллов, состоящих из молекул. Определив координаты атомов в молекулярном кристаллическом веществе, можно выделить составляющие его молекулы и установить их размер и форму.

Легко решается задача, обратная структурной расшифровке: вычисление по известной атомной структуре структурных амплитуд, а по ним -- интенсивностей дифракционных отражений. Метод проб и ошибок, исторически первый метод расшифровки структур, состоит в сопоставлении экспериментально полученных ЅFhklЅэксп, с вычисленными на основе пробной модели значениями ЅFhklЅвыч. В зависимости от величины фактора расходимости

пробная модель принимается или отвергается. В 30-х гг. были разработаны для кристаллических структур более формальные методы, но для некристаллических объектов метод проб и ошибок по-прежнему является практически единственным средством интерпретации дифракционной картины.

Принципиально новый путь к расшифровке атомных структур монокристаллов открыло применение т. н. функций Патерсона (функций межатомных векторов). Для построения функции Патерсона некоторой структуры, состоящей из N атомов, перенесём её параллельно самой себе так, чтобы в фиксированное начало координат попал сначала первый атом. Векторы от начала координат до всех атомов структуры (включая вектор нулевой длины до первого атома) укажут положение N максимумов функции межатомных векторов, совокупность которых называется изображением структуры в атоме 1. Добавим к ним ещё N максимумов, положение которых укажет N векторов от второго атома, помещенного при параллельном переносе структуры в то же начало координат. Проделав эту процедуру со всеми N атомами (рис. 3), мы получим N2 векторов. Функция, описывающая их положение, и есть функция Патерсона.

Рис. 3. Схема построения функции Патерсона для структуры, состоящей из 3 атомов.

Для функции Патерсона Р(u, u, w) (u, u, w -- координаты точек в пространстве межатомных векторов) можно получить выражение:

P(u, х, щ) = 2/V ? |Fhkl|2 cos 2р (hu + kх + lщ), (4)

из которого следует, что она определяется модулями структурных амплитуд, не зависит от их фаз и, следовательно, может быть вычислена непосредственно по данным дифракционного эксперимента. Трудность интерпретации функции Р (u, u, w) состоит в необходимости нахождения координат N атомов из N2 её максимумов, многие из которых сливаются из-за перекрытий, возникающих при построении функции межатомных векторов. Наиболее прост для расшифровки Р (u, u, w) случай, когда в структуре содержится один тяжёлый атом и несколько лёгких. Изображение такой структуры в тяжёлом атоме будет значительно отличаться от др. её изображений. Среди различных методик, позволяющих определить модель исследуемой структуры по функции Патерсона, наиболее эффективными оказались так называемые суперпозиционные методы, которые позволили формализовать её анализ и выполнять его на ЭВМ.

Методы функции Патерсона сталкиваются с серьёзными трудностями при исследовании структур кристаллов, состоящих из одинаковых пли близких по атомному номеру атомов. В этом случае более эффективными оказались Так называемые прямые методы определения фаз структурных амплитуд. Учитывая тот факт, что значение электронной плотности в кристалле всегда положительно (или равно нулю), можно получить большое число неравенств, которым подчиняются коэффициенты Фурье (структурные амплитуды) функции r(x, у, z). Методами неравенств можно сравнительно просто анализировать структуры, содержащие до 20--40 атомов в элементарной ячейке кристалла. Для более сложных структур применяются методы, основанные на вероятностном подходе к проблеме: структурные амплитуды и их фазы рассматриваются как случайные величины; из физических представлений выводятся функции распределения этих случайных величин, которые дают возможность оценить с учётом экспериментальных значений модулей структурных амплитуд наиболее вероятные значения фаз. Эти методы также реализованы на ЭВМ и позволяют расшифровать структуры, содержащие 100--200 и более атомов в элементарной ячейке кристалла.

Итак, если фазы структурных амплитуд установлены, то по (2) может быть вычислено распределение электронной плотности в кристалле, максимумы этого распределения соответствуют положению атомов в структуре (рис. 3). Заключительное уточнение координат атомов проводится на ЭВМ наименьших квадратов методом и в зависимости от качества эксперимента и сложности структуры позволяет получить их с точностью до тысячных долей Е (с помощью современного дифракционного эксперимента можно вычислять также количественные характеристики тепловых колебаний атомов в кристалле с учётом анизотропии этих колебаний). Р. с. а. даёт возможность установить и более тонкие характеристики атомных структур, например распределение валентных электронов в кристалле. Однако эта сложная задача решена пока только для простейших структур. Весьма перспективно для этой цели сочетание нейтронографических и рентгенографических исследований: нейтронографические данные о координатах ядер атомов сопоставляют с распределением в пространстве электронного облака, полученным с помощью Р. с. а. Для решения многих физических и химических задач совместно используют рентгеноструктурные исследования и резонансные методы.

Вершина достижений рентгеноструктурного анализа -- расшифровка трёхмерной структуры белков, нуклеиновых кислот и других макромолекул. Белки в естественных условиях, как правило, кристаллов не образуют. Чтобы добиться регулярного расположения белковых молекул, белки кристаллизуют и затем исследуют их структуру. Фазы структурных амплитуд белковых кристаллов можно определить только в результате совместных усилий рентгенографов и биохимиков. Для решения этой проблемы необходимо получить и исследовать кристаллы самого белка, а также его производных с включением тяжёлых атомов, причём координаты атомов во всех этих структурах должны совпадать.

Рентгеноструктурный анализ позволяет объективно устанавливать структуру кристаллических веществ, в том числе таких сложных, как витамины, антибиотики, координационные соединения и т.д. Полное структурное исследование кристалла часто позволяет решить и чисто химические задачи, например установление или уточнение химической формулы, типа связи, молекулярного веса при известной плотности или плотности при известном молекулярном весе, симметрии и конфигурации молекул и молекулярных ионов.

Рентгеноструктурный анализ с успехом применяется для изучения кристаллического состояния полимеров. Ценные сведения даёт рентгеноструктурный анализ и при исследовании аморфных и жидких тел. Рентгенограммы таких тел содержат несколько размытых дифракционных колец, интенсивность которых быстро падает с увеличением q. По ширине, форме и интенсивности этих колец можно делать заключения об особенностях ближнего порядка в той или иной конкретной жидкой или аморфной структуре.

Важной областью применения рентгеновских лучей является рентгенография металлов и сплавов, которая превратилась в отдельную отрасль науки. Понятие «рентгенография» включает в себя, наряду с полным или частичным рентгеноструктурным анализом, также и другие способы использования рентгеновских лучей - рентгеновскую дефектоскопию (просвечивание), рентгеноспектральный анализ, рентгеновскую микроскопию и другое. Определены структуры чистых металлов и многих сплавов. основанная на рентгеноструктурном анализе кристаллохимия сплавов - один из ведущих разделов металловедения. Ни одна диаграмма состояния металлических сплавов не может считаться надёжно установленной, если данные сплавы не исследованы методами рентгеноструктурного анализа. Благодаря применению методов рентгеноструктурного анализа оказалось возможным глубоко изучить структурные изменения, протекающие в металлах и сплавах при их пластической и термической обработке.

Методу рентгеноструктурного анализа свойственны и серьёзные ограничения. Для проведения полного рентгеноструктурного анализа необходимо, чтобы вещество хорошо кристаллизовалось и давало достаточно устойчивые кристаллы. Иногда необходимо проводить исследование при высоких или низких температурах. Это сильно затрудняет проведение эксперимента. Полное исследование очень трудоёмко, длительно и сопряжено с большим объёмом вычислительной работы.

Для установления атомной структуры средней сложности (~50- 100 атомов в элементарной ячейке) необходимо измерять интенсивности нескольких сотен и даже тысяч дифракционных отражений. Эту весьма трудоёмкую и кропотливую работу выполняют автоматические микроденситомеры и дифрактометры, управляемые ЭВМ, иногда в течение нескольких недель и даже месяцев (например, при анализе структур белков, когда число отражений возрастает до сотен тысяч). В связи с этим в последние годы для решения задач рентгеноструктурного анализа получили широкое применение быстродействующие ЭВМ. Однако даже с применением ЭВМ определение структуры остаётся сложной и трудоёмкой работой. Применение в дифрактометре нескольких счётчиков, которые могут параллельно регистрировать отражения, время эксперимента удаётся сократить. Дифрактометрические измерения превосходят фоторегистрацию по чувствительности и точности.

Позволяя объективно определить структуру молекул и общий характер взаимодействия молекул в кристалле, исследование методом рентгеноструктурного анализа не всегда даёт возможность с нужной степенью достоверности судить о различиях в характере химических связей внутри молекулы, так как точность определения длин связей и валентных углов часто оказывается недостаточной для этой цели. Серьёзным ограничением метода является также трудность определения положений лёгких атомов и особенно атомов водорода.

7. Литература

1) Белов Н. В., Структурная кристаллография, М., 1951;

2) Жданов Г. С., Основы рентгеноструктурного анализа, М. -- Л., 1940;

3) Джеймс Р., Оптические принципы дифракции рентгеновских лучей, М., 1950;

4) Бокий Г. Б., Порай-Кошиц М. А., Рентгеноструктурный анализ. М., 1964;

5) Иголинская Н.М., Рентгеноструктурный анализ полимеров, Кемерово., 2008;

Размещено на Allbest.ru

Подобные документы

    Рентгеновский структурный анализ. Основные экспериментальные методы рентгеноструктурного анализа: метод Лауэ, порошка, вращения кристалла, малоуглового рассеяния, Дебая-Шеррера. Определение атомной структуры по данным дифракции рентгеновских лучей.

    курсовая работа , добавлен 28.12.2015

    Понятие математической обработки результатов анализа и оценка качества. Правильность, точность, надежность результатов анализа. Регистрация и измерение величины аналитического сигнала. Описание и сущность полученных результатов после проведения анализа.

    реферат , добавлен 23.01.2009

    Хроматомасс-спектрометрия в органической химии. Инфракрасная спектроскопия: физико-химические основы, приборы. Пример хроматограммы по всем ионам. Блок-схема фурье-спектрометра. Расшифровка формулы органического соединения по данным элементного анализа.

    контрольная работа , добавлен 17.05.2016

    Понятие и сущность качественного анализа. Цель, возможные методы их описание и характеристика. Качественный химический анализ неорганических и органических веществ. Математическая обработка результатов анализа, и также описание значений показателей.

    реферат , добавлен 23.01.2009

    Определение конфигураций природных энантимеров как важнейшая задача органической химии. Определение абсолютной конфигурации соединений методом рентгеноструктурного анализа. Определение относительной конфигурации. Дисперсия оптического вращения.

    реферат , добавлен 23.05.2016

    Применение статистических методов расчета и обработки исследований химических процессов. Статистическая обработка результатов анализа с доверительной вероятностью Р = 0,9, установление функциональной зависимости между заданными значениями.

    контрольная работа , добавлен 29.01.2008

    Проведение анализа вещества для установление качественного или количественного его состава. Химические, физические и физико-химические методы разделения и определения структурных составляющих гетерогенных систем. Статистическая обработка результатов.

    реферат , добавлен 19.10.2015

    Строение и физико-химические свойства лактоферрина. Методы рентгеновской и оптической дифракции. Ознакомление с условиями проведения гель-хроматографии белков. Анализ олигомерных форм лактоферрина методами гель-хроматографии, светорассеяния и аббеляции.

    дипломная работа , добавлен 28.04.2012

    Использование в физико-химических методах анализа зависимости физических свойств веществ от их химического состава. Инструментальные методы анализа (физические) с использование приборов. Химический (классический) анализ (титриметрия и гравиметрия).

    реферат , добавлен 24.01.2009

    Характеристика гафния. Изучение спектрофотометрических методов анализа. Определение гафния с помощью ксиленового орнажевого, пирокатехинового фиолетового, кверцетина и морина. Сравнение реагентов по чувствительности. Электрохимические методы анализа.

Выбор редакции
Есть у меня такая замечательная книжка, только все забываю куда ее деваю. Так вот, решила опубликовать здесь пост и в него вписать самые...

Подробности Категория: Физика атома и атомного ядра Опубликовано 10.03.2016 18:27 Просмотров: 5164 Древнегреческие и древнеиндийские...

Ценностями в наиболее общем смысле называют вещи и явления, имеющие существенное значение для человека и общества. Ценности обладают...

Типы населённых пунктов России Работу выполнила: ученица 6 класса Каравашкина АннаНаселённый пункт - населённое людьми место (поселение),...
Все началось в далеком 1934 году.В конце 20-х - начале 30-х годов принципиально менялась инфраструктура Челябинска. За короткое время он...
Начиная с XVII столетия наука выдвинула целый ряд классификаций человеческих рас. Сегодня их количество доходит до 15. Однако в основе...
Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13...
Определение 1 Самосознание – это биологически обусловленная способность человека осознавать самого себя.Осознавание личностью себя как...
Изменения и особенности проведения ЕГЭ в 2015 году В 2014 году на федеральном уровне приняты нормативные и процедурные особенности...