Отбор в пользу и против гетерозигот примеры. Естественный отбор: количественная характеристика. Отбор в пользу и против гетерозигот. Примеры


Мутации у диких видов в большинстве случаев нарушают приспособительное развитие особей, и потому большинство мутаций подвергается действию отбора. Дарвин обосновал действие

естественного отбора на базе широкой наследственной изменчивости организмов. Он показал, что родителями для каждого следующего поколения вида служат не все особи без исключения, а только часть их, состоящая из наиболее приспособленных индивидов. Естественный отбор является формирующим фактором в происхождении видов. Он опирается на мутации, формируя из их комплексов новые интегрированные генные системы, обеспечивающие приспособленность к внешней среде. Сам отбор определяется действием среды, что в конечном итоге создает неразрывную взаимозависимость наследственности, изменчивости, отбора и среды.

Человек, выйдя из недр царства животных, оказался способным подняться выше условий той среды, которая обусловливает естественную эволюцию видов в природе. Социальные закономерности определяют взаимоотношения людей и обеспечивают прогресс человеческого общества. Естественный отбор как категория, ведущая эволюцию, потеряла свое значение для человека. Человек благодаря социальным преобразованиям, могущественному развитию медицины, а в будущем и генетики человека сам начинает сознательно относиться к своей биологической природе. Однако следует ли из этого, что у человека вообще не действует отбор отрицательных мутаций в порядке осуществления чисто биологических сторон существования его популяций? Конечно, нет. Естественный отбор вредных мутаций широко представлен в популяциях человека. Мы уже привели раньше немало примеров отрицательных мутаций, вызывающих уродства, гибель в раннем возрасте, гибель по половозрелости и т. д. Человеческие популяции отягощены врожденными наследственными заболеваниями. В каждом поколении около 4% детей рождаются пораженными отрицательной наследственностью, полученной от их родителей, которая у них была скрыта из-за гетерозиготности рецессивных генов. Значительная часть этой отрицательной наследственности возникает заново в качестве мутаций в зародышевых клетках родителей. В некоторых случаях отбор вмешивается в распределение генов по разным популяциям людей, живущих в разных условиях среды. Все это показывает, что для понимания основ биологической природы человека генетика популяций и анализ деятельности отбора имеет огромное значение.

С точки зрения генетики деятельность естественного отбора в популяции приводит к изменениям в концентрациях аллелей. Так, например, мы имеем распределение генотипов в популяции по формуле Гарди - Вейнберга: р 2 АА+2 pqAa + q 2 aa . Отбор направлен против рецессивных гомозигот аа. Так, если особи АА и Аа оставляют потомство без всякой дискриминации, то их влияние на следующие поколения условно может быть представлено цифрой 100 для каждого класса. Однако рецессивы аа оставляют 99 потомков в сравнении со 100 потомками от особей с генотипами АА и Аа. В результате в каждом последующем поколении концентрация аллеля А будет увеличиваться, а концентрация аллеля а уменьшаться. Таким образом, отборная ценность генотипов АА и Аа равна 1,00, а генотипов аа - 0,99. Очевидно, что коэффициент отрицательной селекции (S ) против генотипа аа составляет величину, равную 0,01. Для генотипов АА и Аа коэффициент отрицательной селекции S = 0. В том случае, когда рецессивный генотип является летальным, вызывая смерть на разных стадиях до половозрелости, или вызывает полную стерильность, коэффициент селекции S =1. Адаптивная ценность ( f ) такого генотипа равна 0 (1- Ss = 0).

В том случае, когда адаптивная ценность особи равна нулю, вследствие чего она не имеет потомства, мы можем говорить об индивидуальной облигатной генетической смерти. Мёллер использует понятие о генетической смерти для описания судьбы аллеля в популяции, который под давлением отрицательного отбора выбрасывается из популяции. В этом случае можно говорить об аллельной генетической смерти.

Если бы судьба в популяциях для всех отрицательных аллелей была бы связана только с деятельностью естественного отбора и все аллели испытали аллельную генетическую смерть, популяции были бы свободными от вредных генов. Однако этого нет. Напротив, в популяциях скрывается, а частично и проявляется громадная наследственная изменчивость по вредным изменениям.

Что же противостоит аллельной генетической смерти? Ответ ясен, фактором, действие которого направлено против очищающего эффекта отрицательного отбора, является естественный мутационный процесс. В генном составе популяций устанавливается динамическое равновесие между давлением мутаций, которое увеличивает количество мутантного аллеля в популяциях, и давлением отрицательного отбора, которое уменьшает число таких аллелей.

Предположим, что мутантный доминантный аллель возникает за поколение с какой-то частотой и, а отрицательная селекция уменьшает его количество со скоростью S . В этом случае равновесие концентрации, устанавливающееся на базе соотношения мутаций и отбора, будет равно u / s . Если полностью проявляющийся доминантный аллель является летальным или полностью стерильным, не оставляя потомства (S =1), количество людей, обладающих таким заболеванием, будет равно количеству в каждом данном поколении вновь появляющихся мутаций ( q = u ). Примером такого рода доминантных заболеваний со свойствами облигатной индивидуальной генетической смерти могут служить описанные выше доминантные заболевания, такие, как ретинобластома, в значительной мере хондродистрофическая карликовость и др.

Несколько другую картину имеем для вредных рецессивных аллелей. В этом случае равновесие концентрации (1- q ) устанавливается на уровне (1- q ) = √ u / s . Для рецессивных аллелей, которые в гомозиготном состоянии вызывают индивидуальную облигатную генетическую смерть (S =1), их концентрация равна √ u . Вполне понятно, что уровень равновесия концентраций вредных рецессивов гораздо выше уровня концентрации доминантов. Значит, отягощение популяций вредными мутациями должно быть больше по рецессивным аллелям.

Вполне понятны различия в действии отбора, с одной стороны, против доминантных, а с другой - против рецессивных мутаций. При появлении доминантных генов, которые определяют облигатную индивидуальную генетическую смерть, отбор за одно поколение очищает от них популяции. В каждом следующем поколении такие заболевания могут появиться только за счет возникновения новых мутаций.

Для анализа отбора против рецессивов остановимся на примере альбинизма у человека. Эта особенность отнюдь не вызывает облигатной генетической смерти, она подвергается умеренному отрицательному отбору. В Англии в среднем на 20 000 детей рождается один альбинос. Частота гомозигот по рецессивному аллелю альбинизма равна 0,00005. По формуле Гарди - Вейнберга концентрация рецессивного аллеля равна квадратному корню из числа гомозигот. Отсюда (1-р) 2 = 0,00005, a 1 - q = √ 00005=0,007. Таким образом, у населения Англии ген альбинизма имеет концентрацию около 0,7% (q ), а его нормальный аллель около 99,3% (p =0,993). Количество гетерозигот у этого населения составляет 2 pq , что равно 2 (0,007 x 0,993), или 0,0138, или 1,38%. Гетерозиготы (Аа) по рецессивному аллелю альбинизма встречаются в популяции в 276 раз чаще, чем гомозиготы (аа), проявляющие альбинизм (0,0138:0,00005=276). Как уже указывалась выше, относительное количество гетерозигот тем выше, чем меньше концентрация рецессивного аллеля, поскольку отрицательный отбор постепенно уменьшает концентрацию аллеля. Следовательно, по мере этого уменьшения дальнейшая работа отбора все больше затрудняется. Уменьшение концентрации рецессивного аллеля ограничивает поле приложения деятельности отбора, так как все большая и большая относительная часть рецессивных аллелей ускользает от отбора, скрываясь в гетерозиготах.

Представим исходную популяцию при концентрации рецессивного аллеля равной 0,5. Распределение генотипов в популяции будет 0,25АА+ 0,50Аа+ 0,25аа. В такой популяции начинает осуществляться облигатная индивидуальная генетическая смерть (коэффициент селекции S = 1). В таблице 20 показан ход уменьшения концентрации аллеля а в ряде последующих поколений при условии, что во всех этих поколениях величина S =1.

Мы видим, что уже в следующем поколении при S =1 концентрация рецессивного аллеля упала с 0,50% до 0,33, а количество гомозигот по рецессивному аллелю (аа) упало с 0,25 до 0,01. Это вполне очевидный успех отрицательного отбора. Однако после всего лишь одного поколения отбора уже начинает сказываться эффект диспропорции между количеством гетерозигот (Аа) и рецессивных гомозигот (аа), которое возникает от уменьшения концентрации рецессивного аллеля. Если в первом поколении количество гетерозигот (Аа) превосходит количество гомозигот в два раза, то во втором поколении после некоторого падения концентрации рецессивного аллеля количество гетерозигот уже в четыре раза превосходит число гомозиготных особей. После восьмого поколения отбора, при S =1, концентрация рецессивных аллелей упала до 0,1%, к этому времени количество гетерозигот (Аа) стало превышать количество гомозигот (аа) уже в 18 раз. На сотом поколении отбора, когда концентрация аллеля а упала до 0,01, количество гетерозигот стало превышать количество гомозиготных особей в 196 раз. При этом мы видим, что для уменьшения концентрации рецессивного аллеля вдвое, при q =0,50, потребовалось всего лишь два поколения отбора - 0,50, F 3 - 0,025). Однако то же уменьшение от q =0,020 ( F 50 ) до q =0,010 потребовало в этих условиях уже 50 поколений ( F 100 ).

Сравнительно быстрые успехи селекции против рецессивного аллеля, которые мы видели в таблице 20, обязаны облигатной индивидуальной генетической смерти всех носителей гомозиготного по рецессивному аллелю генотипа (аа), т. е. когда S =1. Однако особи, гомозиготные по рецессивному аллелю, не


обязательно целиком исключаются в качестве части родителей для следующего поколения. Величина коэффициента селекции в зависимости от степени вредности рецессивного аллеля может быть самой разнообразной.

В прямой зависимости от уменьшения величины коэффициента селекции ( s ) увеличивается количество поколений, нужное для одного и того же падения концентрации рецессивного аллеля. В таблице 21 эта обратная зависимость представлена в числах.


Мы видим, что четыре популяции при наличии в них исходного количества рецессивных гомозигот, равного 1%, очень сильно различаются по темпу изменения концентрации рецессивного аллеля при разных коэффициентах селекции.

Так, при S =1, для того чтобы количество рецессивных гомозигот уменьшалось от 1 до 0,25%, т. е. в 4 раза, необходим отбор в течение 10 поколений. Однако при S =0,50 такое же изменение концентрации рецессивного аллеля требует уже 20 поколений отбора. При S =0,10 за те же 20 поколений отбора количество рецессивных гомозигот падает только до 0,71, а при S =0,01 всего лишь до 0,97%.

Приведенные расчеты показывают, что естественный отбор, конечно, является активным фактором в биологии человека; именно его действие удерживает мутационные аллели, вызывающие отдельные наследственные болезни в популяциях человека на очень низком уровне. Только множество аллелей приводит к тому, что медицина встречается более чем с 1000 наследственных недугов. Вместе с тем приведенные расчеты показывают малую перспективность любой формы естественного отбора для человека. Мы видели, что на уровне малых концентраций мутационных аллелей, именно тех, которые свойственны аллелям наследственных заболеваний у человека, нужны гигантские количества поколений, чтобы хоть в сколько-нибудь заметной форме уменьшить их концентрацию. Эти количества поколений несоизмеримо больше всего количества поколений, которое прошло за историю человечества. Это показывает всю генетическую бессмысленность старых, евгенических предложений о стерилизации и других мерах борьбы за очищение популяций людей от обусловленных дефектов. Эти методы не могут изменить генетических основ биологии человека. Масса таких же аллелей скрывается в гетерозиготах; их количество неукоснительно поддерживается постоянно возникающими новыми мутациями. Усиление естественного отбора для человека в борьбе с наследственными заболеваниями бесперспективно. Если это так, каковы же пути активной помощи медицины в генетической профилактике против наследственных дефектов человека и есть ли пути к созданию таких методов? Ответ на этот вопрос потребует от нас еще некоторых сведений из области генетики популяций человека.

Отбор может действовать не только на доминантный (АА, Аа) и на рецессивный (аа) фенотипы в популяциях людей. Гетерозиготные люди (Аа) также могут выступать в качестве самостоятельного объекта действия отбора. При этом отбор может быть направлен или против гетерозигот, или в пользу гетерозигот. В обоих случаях возникают интересные и сложные процессы в генетике популяций.

Примером отбора гетерозигот является гибель эмбрионов вследствие эритробластоза. В этом случае плод является гетерозиготным по аллелям R и r , так как он появляется от брака резус-положительного отца ( R ) и резус-отрицательный матери ( rr ). Гибель каждого плода уносит с собой один аллель R и один аллель r . В популяциях аллели, в силу действия отбора или по случайным причинам, практически никогда не имеют равных концентраций в виде р A =0,5 и qa =0,5. Поэтому гибель гетерозигот сдвигает отношение концентраций аллеля еще в более выгодную сторону для того аллеля, который находится в популяции в большой концентрации. Каждая потеря по одной и той же доле аллелей из двух представленных в популяции разными концентрациями ведет к относительному росту концентрации исходного, более распространенного аллеля. Процесс заканчивается полным освобождением популяции от исходно менее распространенного аллеля.

Однако реально в популяциях человека этого освобождения от аллеля r не произошло. Что же противостоит этому процессу? Здесь возможно действие целого ряда причин. Во-первых, поддержка аллеля r в популяциях за счет мутаций ( R r ) ; во-вторых, отбор в пользу аллеля r благодаря лучшей жизнеспособности гомозигот (rr ); в-третьих, комплексное сохранение аллеля r в семьях, где часть детей гибнет от эритробластоза. Это имеет место в семьях, где отец гетерозиготен ( Rr ), а мать имеет генотип rr . Здесь все дети, гибнущие от эритробластоза, будут гетерозиготными. ( Rr ), а жизнеспособные дети будут гомозиготными по аллелю r ( rr ). В результате автоматически будет поддерживаться аллель r в популяциях. В-четвертых, наличие гена r в популяциях может быть обусловлено смешением популяций. Винер и Холден считают, что в свое время в доисторических популяциях человека произошла дифференцировка популяций по генам R и r , в результате чего возникли полиморфные расы: одни только с аллелем R , другие только с аллелем r . Затем в более позднее время началось движение популяций человека: они смешались, и возник полиморфизм по аллелям R и r . Некоторые расчеты дают основание думать, что при исходном смешении имелось несколько большее число людей с аллелем R и меньше людей, имевших аллель r . Такое смешение произошло около 10 000 лет тому назад. В течение этих 10 000 лет, т. е. за время, в течение которого прошло 400 поколений, отбор был направлен против гетерозигот, что и привело к уменьшению исходной концентрации аллеля r . Эта концентрация упала до современных 14% у европейских народов.

Вполне понятно, что если, как то мы видели выше, отбор против гетерозигот ведет к относительному падению концентрации исходного менее распространенного аллеля, то в случае отбора в пользу гетерозигот мы имеем другую картину. Простейшим случаем является модель балансированных леталей, когда обе гомозиготы - АА и аа - летальны, а выживают только гетерозиготы Аа. В этом случае перед нами будет стабильная популяция, в которой оба аллеля будут сохранять одинаковую концентрацию ( qa =0,5 , рА=0,5). Тот же результат был бы получен, если бы отбор действовал против нелетальных гомозигот обоих типов (АА и аа), но с одинаковой эффективностью.

Во всех случаях отбора в пользу гетерозигот популяция стремится к установлению некоторых устойчивых соотношений в концентрациях доминантного и рецессивного аллелей. Уровень этого соотношения определяется соотносительными коэффициентами селекции против каждого из гомозигот. Эти устойчивые соотношения аллелей устанавливаются в популяции при любом исходном строении популяций (табл. 22).


Мы видим, что популяция 1, имевшая исходные концентрации аллелей в виде pA =0,5 и qa = 0,5 при S =0,5 на оба типа гомозигот (АА и аа), не меняет своей генотипической структуры в следующем поколении.

Однако в популяции 2, при наличии других концентраций аллелей, отбор в пользу гетерозигот сдвигает исходные концентрации. Уже в первом поколении после отбора обе концентрации разных аллелей начинают сдвигаться в направлении величины, равной 0,5 (0,4-0,433; 0,6-0,567).

Однако точка равновесия популяций в виде 0,5 при отборе направленных против обоих типов гомозигот (АА и аа) характеризует только те случаи, когда коэффициент селекции равен в обоих случаях. Если же коэффициент селекции будет равным для двух гомозигот, то точка равновесия популяции сдвигается в сторону того аллеля, коэффициент селекции которого меньше. Например, примем, что в малярийной местности приспособление гетерозигот - Hb 1 S Hb 1 A равно единице, приспособление гомозигот по нормальному аллелю 0,8 и, наконец, приспособление гомозигот Hb 1 S Hb 1 S равно 0,1. В такой популяции устойчивому равновесию будет соответствовать следующая концентрация аллелей. Для аллеля Hb 1 S концентрация будет равна 0,18, а для аллеля Н b А =0,82.

Таким образом, имеется много доказательств, что особенности распределения мутационных аллелей в популяции человека определяются действием отбора. Это в первую очередь касается генов, приводящих к индивидуальной облигатной генетической смерти, а также генов полулетального характера. Во всех этих случаях в популяциях человека устанавливается равновесие на основе соотношения давления мутаций и давления отбора.

Однако наследственная изменчивость в популяциях человека далеко не одинакова по наличию аллелей, определяющих появление тяжелых d рожденных заболеваний у человека. Тысячи разнообразных особенностей человеческого организма подвергаются наследственной изменчивости. В популяциях человека мы встречаемся с картиной разнообразнейшего генетического полиморфизма. Концентрация аллелей тех генов, которые вызывают признаки, практически, казалось бы, совершенно не подвергающиеся отбору, представлены в популяциях самыми различными величинами.

Встает вопрос: какие факторы вызывают и регулируют генетический полиморфизм человека? В какой мере эти факторы специфичны и не является ли отбор регулятором концентрации аллелей в популяциях?

— Источник—

Дубинин, Н.П. Горизонты генетики/ Н.П. Дубинин. – М.: Просвещение, 1970.- 560 с.

Post Views: 328

Рецессивные аллели - например, те, которые определяют бесцветность семян у кукурузы (с), зачаточные крылья у дрозофилы (vg) и фенилкетонурию у людей, - в гетерозиготном состоянии вызывают формирование фенотипа, тождественного в отношении приспособленности с фенотипом гомозигот по доминантному аллелю. Однако гомозиготы по рецессивному аллелю могут обладать существенно пониженной приспособленностью. В этом случае отбор будет действовать против рецессивных гомозигот. Мы исследуем действие отбора с помощью следующей общей модели:

Процедура, посредством которой рассчитываются изменения частот аллелей из поколения в поколение, представлена в табл. 24.4. Более подробно она описана в дополнении 24.2. Исходные частоты зигот в соответствии с законом Харди-Вайнберга задаются случайной комбинацией гамет предыдущего поколения. Основной этап расчета представлен в третьей строке табл. 24.4: это умножение исходных частот зигот (первая строка) на их относительные приспособленности (вторая строка). Соответствующие произведения определяют вклад каждого генотипа в генофонд следующего поколения. Однако сумма приведенных в третьей строке значений не равна единице. Для того чтобы перейти к частотам, сумма которых равна единице, мы должны разделить каждое из этих значений на их сумму. Эта операция, называемая нормализацией, проделана в четвертой строке таблицы. Теперь по полученным частотам генотипов потомков мы можем рассчитать частоту аллелей после отбора в соответствии с процедурой, описанной в гл. 22. Изменение частоты аллеля в результате отбора получается вычитанием исходной частоты аллеля из его частоты после отбора. В первой, четвертой и пятой строках табл. 24.4 представлены исходная частота q аллеля а, его частота q 1 после одного поколения отбора и изменение частот в результате отбора ∆q = q 1 - q.

Под действием отбора против рецессивных гомозигот частота рецессивного аллеля понижается. Этого и следовало ожидать, поскольку у гомозигот по рецессивному аллелю эффективность размножения ниже, чем у генотипов с доминантным аллелем.

Каков будет окончательный исход отбора? По определению частоты аллелей больше не изменяются, когда

Таблица 15
ЭЛЕМЕНТАРНЫЕ ЭВОЛЮЦИОННЫЕ ФАКТОРЫ

Мутационный процесс Популяционные волны Изоляции Естественный отбор

1.Резерв наследстенной 1.Периодические 1.Возникновение барьеров для Движущая и направляю-

Изменчивости 2.Непериодические панмиксии щая сила эволюции

2.Поставщик материала для 3.Поставщик эволюцион-

Эволюции ного материала 1.пространствен- 2.Биологическая 1.Стабилизирующий

3.Не направлен 4.Случайные колебание ная (биотопичес- а)морфо-физио- Поддержание среднего частоты генотипов кая и географическая) логическая значение признака

Б)этологическая 2.Движущий

В)генетическая Способствует сдвигу сред

Него значения признаков

3.Дизруптивный

А) направлен против особей

Со средними значениями

образуют генетический груз. Генетический груз состоит из мутационного груза (новые мутации) и сегрегационного груза (унаследованные от предыдущих поколений). Генетический груз – накопление в популяции неблагоприятных аллелей в гетерозиготном состоянии. Генетический груз оценивается понятием летальный эквивалент – это сумма рецессивных аллелей, приводящих организм в гомозиготном состоянии к гибели. Благодаря генетическому грузу около 50% зигот или организмов гибнут или не оставляют потомства.

Проблема генетического груза имеет важное значение в медицине. При проведении медико-генетической консультации следует учитывать генетический груз семей и популяций. Проблема генетического груза имеет важное значение также при определении мутагенности факторов окружающей среды, разработке эффективных мер охраны окружающей среды.

Изоляция . Основные причины изоляции в человеческих популяциях: географические, религиозные, расовые, социальные. Изоляция приводят к повышению частоты инбредных браков. В результате происходит гомозиготизация, увеличивается гибель зигот и плодов в антенатальном периоде, гибель новорожденных в перинатальном и неонатальном периодах, увеличивается частота мертворожденый, спонтанных абортов, врожденных аномалий и пороков, наледственных болезней.

Популяционные волны . Имели большое значение на начальных этапах развития человечества. Природные катаклизмы, землятрясения, особо опасные эпидемии (чума, холера, черная оспа) явились причиного резкого сокрашения численности человечства в определенных периодах и изменения их генофонда.

Генетический полиморфизм человечества, разная частота аллелей и генотипов в различных регионах также обусловлены особо опасными инфекционными болезнями. Например: одной из причин высокой частоты I 0 аллеля группы крови в Центральной и Южной Америке, повидимому является расространенность сифилиса в этих регионах. Люди с I группой крови легче переносили сифилис, соответственно частота I 0 группы постепенно возрастала. Установлено, что тяжесть черной оспы и холеры также зависит от групп крови, следовательно, эти инфекции явились причиной преобладания определенных групп крови в разных регионах земного шара.

Миграции являются одным из проявлений популяцонных волн. Они оказывают положительное влияние на генофонд, приводят к уменьшению инбредных браков, увеличению смешанных браков. В результате миграций увеличивается чстота гетерозигот, уменьшается частота детской смертности и наследственных болезней. В настоящее время наблюдается рост интенсивности миграционного процесса во всем мире.

Дрейф генов (генетико-автоматические процессы) случайные, не зависящие от естественного отбора изменения частоты аллели называются дрейфом генов или генетико-автоматическими процессами. Дрейф генов сильнее проявляется в малочисленных популяциях. Под влиянием случайных процессов частота отдельных аллелей может резко уменьшаться или нааборот увеличиваться. Значение дрейфа генов непредсказуемо. Из-за дрейфа генов малые популяции могут исчезнуть или адаптироваться к сушествующим условиям среды.

С дрейфом генов связано явление, называемое «эффектом родоначальника ». Отделение от родительской популяци небольшой части, и ее независимое существование приводит к значительнымс изменениям генофонда отделенной части популяции. Выделенная группа содержит лишь случайную часть генофонда родительской популяции. В результате изолированного развития повышается частота данных аллелей происходит гомозиготизация. Это приводит к постепенному возрастанию разницы в частоте аллелей, генотипов родительской популяции и её отдельной части.

Естественный отбор . Из-за биосоциальной сущности человека естетственный отбор в человеческих популяциях потерял свое значение как творческого фактора. В человеческих популяциях действует стабилизирующая форма естественного отбора. Стабилизирующий отбор не приводит к эволюционным изменениям, наоборот сохраняет фенотипическую стабильность популяции из поколения к поколению.

В человеческих популяциях действуют следующие формы стабилизирующего отбора: 1-отбор в пользу гомозигот, против гетерозигот, 2-отбор против гомозигот, в пользу гетерозигот.

1.Типичным примером отбора против гетерозигот является несовместимость по резус фактору между матерью и плодом. Резус фактор – антиген на плазмолемме эритроцитов. Частота встречаемости резус фактора у европоидов – 85%, у монголоидов – 90-95%. Синтез резус положительного антигена определяется доминантным аллелем, резус отрицательные люди имеют гомозиготный по рецессивному гену генотип.

Если у резус отрицательной женщины развивается резус положительный плод, его резус положительные антигены через плаценту проникают в организм матери, где образуются антирезус-антитела (рис.37). Концентрация антирезус – антител постепенно возрастает и при последующей беременности эти антитела проникают в организм плода, вызывая гемолиз эритроцитов. У плода развивается анемия, при отсутствии медицинской помощи плод гибнет. Таким образом, в человеческих полпуляциях гетрозиготы по резус фактору постоянно элиминируются. Такой отбор направлен против гетерозигот, у в пользу гомозигот.

Несовместимость матери и плода имеет место и по группам крови системы АВО. При этом возникают иммунные реакции несовместимости между матерью с I 0 I 0 (I) группой и плодами с I A I 0 или I В I 0 группами. Такой отбор действует уже в начале эмбриогенеза.

II.Отбор против гомозигот, в пользу гетерозигот.

Такая форма отбора наблюдается при серповидно-клеточной анемии, талассемии. Серповидно-клеточная анемия развивается при замене одного нуклеотида в гене гемоглобина. У гомозигот (HbS/HbS) развивается тяжелая форма болезни, гетерозиготы (HbА/HbS) при нормальных условиях – практически здоровы.

В регионах где распространена малярия, гетерозиготы (HbА/HbS) не болееют этой болезнью, (в их эритроцитах малярийные плазмодии не развиваются), в результате чего частота гетерозигот в популяции постоянно возрастает. Рецессивные гомозиготы (HbS/HbS) гибнут в период внутриутробного развития или в раннем детстве. Доминантные гомозиготы (HbА/HbА) гибнут от малярии.

Рис 37. Наследование резус-фактора у человека и болезнь крови у новорожденных.

А-отец-носитель гена Rh; б-мать резус-отрицательна (rh rh); в-первая беременность, антиген Rh входит в материнский кровоток вызывает образование резус-антител (косая штриховка), их недостаточно и ребенок рождается нормальным (1); Г-вторая беременность, мать дополнительно иммунизирована плодом Rh, резус-антитела входят от матери в кровоток плода и реагируют с его эритроцитами –

Плод погибает (2).

Таким образом, малярия является фактором контр отбора . Аллели НbS подлежащие элиминированию, сохраняются и накапливаются в популяции в результате контр отбора. В регионах, где ликвидирована малярия, такая форма отбора теряет свое значение.

Цель занятия.

Формирование у студентов понятий: о синтетической теории эволюции: микроэволюции и макроэволюции, элементарной единице, и факторах эволюции, медико-биологическом значении действия элементарных факторов эволюции в человеческих популяциях.

Задания для самостоятельной подготовки студентов.

I.Изучить материал по теме, ответить на следующие вопросы:

1.Объясните сущность синтетической теории эволюции, макроэволюции и микроэволюции.

2.Охарактеризуйте популяции и виды.

3.Объясните значение понятий об элементарных единицах, явлениях, материалах и факторах эволюции.

4.Объясните медико-генетическое значение мутационного процесса в человеческих популяциях.

5.Генетический груз, сущность и медицинское значение

6.Изоляция, сущность, медико-генетическое значение.

7.Популяционные волны, миграции. Медико-генетическое значение.

8.Дрейф генов, «эффект родоначальника», медико-генетическое значение.

9.Особенности естественного отбора в человеческих популяциях.

10.Отбор против гетерозигот (объясните с примерами).

11.Отбор против гомозигот, контр отбор (объясните с примерами.)

II.Решить ситуационные задачи и ответить на тестовые вопросы:

Учебное оборудование.

Таблицы по теме, схемы логической структуры по теме, слайды, диапроектор, кодоскоп, учебные видеофильмы.

План занятия.

Студенты с помощью преподавателя осваивают понятия эволюционного учения, изучают действие элементарных факторов эволюции в человеческих популяциях и их медико-генетическое значение. Демонстрируется учебный видеофильм. Студенты записывают основные понятия в альбом. В заключении преподаватель проверяет альбомы, оценивает знания студентов и объясняет задание следующего занятия.

Ситуцационные задачи.

1.В одном из регионов тропической Африки частота серповидно-клеточной анемии составляет 20%. Определите частоту нормальных и мутантных аллелей в этом регионе.

2.В отдельном регионе частота гетерозигот по мутантному патологитческому гену значительно превышает ожидаемые по закону Харди-Вайнберга результаты. Объясните причину этого неосответствия.

3.Примерно 100 лет тому назад в Центральной Азии была широко распространения малярия. В 40-50- годах 20 столетия в этом регионе малярия полностью ликвидирована. В какой период, по вашему мнению, частота серповидно-клеточный анемии была выше? (ответ обоснуйте).

4.В двух соседних горных кишлаках Узбекистана резко отличается частота I A и I B групп крови. Объясните причину этого явления.

5.Частота I В группы крови значительно отличается в популяциях Восточной и Западной Европы. С какими эволюционными факторами связано это явление?

Тестовые задания.

1.Объясните увеличение частоты отдельных аллелей при изоляци:

А.Ошибка в гаметогенезе. В.Аутбридинг. С.Высокая частота мутаций.

Д.Положительно ассортативные браки. Е.Инбредные браки.

2.Среди изолятов памирских таджиков чаще встречаются голубоглазые и светловолосые. Укажите причину этого явления:

А.Они являются потомками Александра Македонского.

В.В высокогорье эти признаки имеют адаптивное значение.

С.Это-результат дрейфа гена.

Д.При действии ультрафиолетовых лучей доминантные гены подвергаются мутации.

Е.Это-результат популяционных волн.

3.Что способствует изменению численности популяции?

А.Мутционные процессы. В.Волны жизни. С.Изоляция. Д.Естественный отбор. Е.Искусственный отбор.

4.Укажите пример ассоциации групп крови с инфекционными заболеваниями:

А.Индивиды с группой крови О чаще болеют сифилисом.

В.Индивиды с группой крови О не болеют холерой.

С.Индивиды с группой крови О чаще болеют чумой.

Д. Среди индивидов с группой крови А не встречается черная оспа.

Е.Такая ассоциация не существует.

5.«Эффект родоначальника» в популяциях людей:

А.Проявляется при развитии новой популяции из нескольких супружеских пар. В.Наблюдается при аутбридинге. С.Не наблюдается. Д.Является фактором отбора. Е.Увеличивает частоту гетерозигот.

6.Дрейф генов:

А.Случайные колебания частоты генов в популяциях без влияния отбора.

В.Увеличивает генетическую гетерогенность.

С.Увеличивает генетическую изменчивость.

Д.Уменьшает частоту гомозигот.

Е.Усиливает генетическую стабильность популяции.

7.Какая форма обора действует при несовместимости матери и плода по АВО системе крови?

А.Дизруптивная. В.Движущая. С.Отбор против гомозигот. Д.Отбор против гетерозигот. Е.Все ответы дополняют друг-друга.

8.Естественный отбор в человеческих популяциях:

А.Является творческим фактором. В.Действует в дизруптивной форме.

С.Действует в движущей форме. Д.Действует в стабилизирующей форме.

Е.Не действует.

9.Полиморфизм по системе крови:

А.Повышает риск злокачественной трансформации.

В.Предрасположенность к злокачественной опухоли не связана с группами крови. С.Группы крови могут быть маркерами предрасположенности к разным болезням. Д.Не наблюдается в человеческих популяциях.

Е.Является доказательством происхождения человека от животных.

10.Колонизторы вели биологическую борьбу с туземцами Америки, раздавая им одежды, зараженные чумными бактериями. Объясните причину этого.

А.В этих регионах высокая частота группы крови А.

В.Люди с 1 группой крови воспримчивы к чуме.

С. У чумной бактерии отсутствует антигенная мимикрия по II группе крови;

Д.Аборигены Америки не умели лечить чуму.

Е.Это явление не связано с генетикой группой крови.

Хотя определенные мутантные аллели могут быть опасны у гомозигот, возможны внешние условия, при которых гетерозиготные носители некоторых болезней имеют повышенную приспособляемость не только относительно гомозигот по мутантному, но и гомозигот по нормальному аллелю, такая ситуация называется «преимущество гетерозигот».

Даже легкое преимущество гетерозигот может вести к увеличению частоты патологического аллеля, поскольку гетерозиготы численно существенно превосходят гомозиготы в популяции. Ситуация, когда факторы отбора влияют как на поддержание патологического аллеля, так и на удаление его из пула генов, называется балансированным полиморфизмом.

Известный пример преимущества гетерозигот - устойчивость к малярии у гетерозигот по мутации, вызывающей серповидноклеточную анемию. Аллель серповидноклеточности достиг самой высокой частоты в определенных регионах Западной Африки, где гетерозиготы встречаются чаще гомозигот любого типа, так как гетерозиготы сравнительно устойчивее к малярийному плазмодию.

Преимущество гетерозигот при серповидноклеточной анемии иллюстрирует, как нарушение одного из фундаментальных условий о том, что частоты аллеля значительно не изменяются отбором, изменяет математическое отношение между аллелем и частотами генотипа по сравнению с ожидаемым. Рассмотрим два аллеля, нормальный аллель А и мутантный S, которые вызывают три генотипа: А/А (норма), A/S (гетерозиготные носители) и S/S (серповидноклеточная анемия).

В выборке 12 387 взрослых из популяции Западной Африки три генотипа обнаружены в следующих пропорциях: 9365А/А: 2993A/S: 29S/S. Суммируя аллели А и S в этих трех генотипах, можно определить частоты аллелей, p=0,877 и q=0,123. По закону Харди-Вайнберга, отношение генотипов должно быть А/А: A/S: S/S = р2:2pq:q2 = 9527: 2672: 188. Наблюдаемые коэффициенты 9365: 2993: 29, значительно отличаются от ожидаемых. Пример серповидноклеточной анемии показывает, как влияние отбора, действующего не только на сравнительно редкий генотип S/S, но и на два других, более частых А/А и А/5, искажает передачу аллелей и вызывает отклонение от равновесия Харди-Вайнберга в популяции.

Изменение давления отбора должно привести к быстрому изменению относительных частот аллелей серповидноклеточной анемии. Сегодня большинство гетерозиготных носителей проживают в немалярийных районах, а в малярийных областях принимаются меры по уничтожению комаров, переносящих возбудителя болезни. И есть подтверждение, что в популяции афроамериканцев в Соединенных Штатах частота гена серповидноклеточной анемии уже снизилась по сравнению с высоким уровнем в исходной африканской популяции, хотя здесь могут также играть роль и другие факторы, например, введение в пул генов афроамериканцев аллелей из неафриканских популяций.

Считают, что некоторые другие патологические аллели , включая гены гемоглобина С (НbС), талассемии и недостаточности глюкозо-6-фосфат дегидрогеназы (Г6ФД), а также доброкачественный аллель FY групп крови системы Даффи, встречаются с высокими частотами в определенных популяциях также из-за защиты, которую они обеспечивают против малярии. Предполагают, что преимущество гетерозигот объясняет высокую частоту муковисцидоза в белых популяциях и болезни Тея-Сакса и других нарушений метаболизма сфинголипидов в популяции евреев ашкенази.

Дрейф генов против преимущества гетерозигот

Бывает непросто определить , дрейф генов или преимущество гетерозигот ответственны за повышенную частоту некоторых патологических аллелей в конкретной популяции. Давление отбора окружающей среды, ответственное за преимущество гетерозигот, возможно, действовало в прошлом и определяется сегодня. Например, градиент с северо-запада на юго-восток частоты аллеля ACCJR5 отражает основные различия в частоте этого аллеля в разных этнических группах.

Так, наибольшая частота аллеля ACCR5 - 21% обнаружена среди евреев ашкенази, почти такая же, как в Исландии и на Британских островах. Наблюдаемая пандемия СПИДа слишком молода, чтобы влиять на частоты генов вследствие отбора; изменение в частотах аллеля в Европе наиболее соответствует дрейфу генов, действовавшему на нейтральный полиморфизм. Тем не менее, возможно, что другой фактор отбора (возможно, другая инфекционная болезнь, например бубонная чума), повлиял на частоту аллеля ACCR5 в популяциях европейского севера в период интенсивного отбора. Таким образом, генетики продолжают обсуждать, дрейф генов или преимущество гетерозигот (или оба) стали причиной необыкновенно высоких частот, которых достигают отдельные патологические аллели в некоторых популяциях.

Популяционная генетика использует количественные методы для объяснения, почему и как возникали различия в частотах генетических болезней и ответственных за них аллелей среди различных этнических групп. Популяционная генетика также важна для попыток идентифицировать аллели восприимчивости для частых комплексных заболеваний с использованием методов популяционного анализа.

Генетическая вариабельность показывает не только увлекательную историю человечества, она также имеет важный практический смысл для профессионалов, пытающихся эффективно и целенаправленно оказывать соответствующую персонифицированную медицинскую помощь населению.

А) Отбор против гетерозигот.

Отрицательный отбор в свою очередь может быть направленпротив гетерозигот ипротив гомозигот.

В ряде случаев приспособленность гетерозигот может быть ниже приспособленности гомозигот. Такая картина наблюдается у межвидовых и внутривидовых гибридов, хотя здесь и неприменима однолокусная модель. Низкая приспособленность гетерозигот наблюдается и при наличии транслокаций на одной из хромосом и нормальной парной хромосомы. Такие гетерозиготы по хромосомнымтранслокациям часто образуют несбалансированные гаметы с пониженной жизнеспособностью, что снижает приспособленность гетерозигот по сравнению с гомозиготами. Модель невыгодности гетерозигот может быть полезна для контроля численности популяций вредителей.

Польза гетерозиготности: гетерозиготы по гемофилии, альбинизму, серповидноклеточной анемии и т. д. не страдают данными заболеваниями, вследствие их рецессивности. Особи, несущие полиаллельные гены, дают более жизнеспособное потомство с широкой нормой реакции. Гетерозиготность - это "блокатор" вредных рецессивных аллелей.

Примером отрицательного отбора, направленного против гетерозигот, может служить наследование Rh-фактора.Rh-фактор контролируется тремя доминантными тесно сцепленными генами, поэтому их можно условно принять за один.

При браке мужчины, обладающего резус-положительным фактором, и женщины с резус-отрицательным фактором чаще возможно зачатие "резус-положительного" плода.

Антигены плода в период вынашивания в небольшом количестве способны проникать в кровоток матери через плаценту и вызывать образование антител (особенно если есть патология детского места). При первой беременности (иногда и при второй) концентрация их в крови сравнительно невелика и зародыш развивается, не испытывая вредных влияний этих антител.

Б) Отбор против гомозигот.

Во многих случаях происходит лишь частичный отбор против гомозигот. Поэтому относительная приспособленность гомозигот по сравнению с другими генотипами уменьшается лишь отчасти. При многих генетических болезнях человека, например при альбинизме или серповидноклеточной анемии , гомозиготы по рецессивному аллелю могут выжить и дать потомство, хотя и с меньшей вероятностью, чем здоровые индивиды. У дрозофилы, мыши, кукурузы и других генетически исследованных организмов существует множество рецессивных мутаций, которые снижают приспособленность, но не приводят к смертельному исходу.

В) отбор и контротбор.

Контротбор-положительный отбор, направленный против отрицательного отбора (поддержание гомозигот и гетеорозигот)

Генофонд популяций человека является результатом наложения многочисленных и разнонаправленных векторов отбора, обеспечивающего сохранение в каждом поколении сравнительно приспособленных к данным условиям генотипов. При этом с течением времени влияние отбора на генетическую структуру популяций людей снижается в основном благодаря успехам лечебной и профилактической медицины, а также социально-экономическим преобразованиям цивилизации.

Вопрос№ 20 учение о микро-и макроэволюции.

А) Микроэволюция.

Микроэволюция - это распространение в популяциималых изменений в частотахаллелейна протяжении несколькихпоколений; эволюционные изменения на внутривидовом уровне. Такие изменения происходят из-за следующих процессов:мутации,естественный отбор,искусственный отбор,перенос геновидрейф генов. Эти изменения приводят кдивергенциипопуляций внутривида, и, в конечном итоге, квидообразованию.

Под действием элементарных факторов на генофонд популяции происходит изменение частот отдельных генов. Это приводит к элементарному эволюционному явлению - изменению генотипического и фенотипического состава популяции. При длительном однонаправленном воздействии естественного отбора наблюдается дифференциация популяций.

Б) биологическая сущность макроэволюции.

Сущность макроэволюции. Этим понятием обозначают происхождение надвидовых таксонов (родов, отрядов, классов, типов, отделов). В общем смысле макроэволюцией можно назвать развитие жизни на Земле в целом, включая и ее происхождение. Макроэволюционным событием считается также возникновение человека, по многим признакам отличающегося от других биологических видов. Между микро- и макроэволюцией нельзя провести резкую грань, потому что процесс микроэво-

люции, первично вызывающий дивергенцию популяций (вплоть до видообразования), продолжается без какого-либо перерыва и на макроэволюционном уровне внутри вновь возникших форм.

Отсутствие принципиальных различий в протекании микро- и макроэволюционно! о процессов позволяет рассматривать их как две стороны единого эволюционного процесса и применять для анализа всего процесса понятия, разработанные в теории микроэволюции, поскольку макроэволюционные явления охватывают десятки миллионов лет и исключают возможность их непосредственного экспериментального исследования.

Способы осуществления макроэволюции. Макроэволюция может осуществляться несколькими способами. Основной способ -дивергенция - представляет собой независимое образование различных признаков у родственных организмов. В основе дивергенции лежит экологическая дифференциация вида (или группы видов) на самостоятельные ветви. Различия между видами одной группы в процессе эволюции, в силу изменения направления отбора, все более и более углубляются. Но вместе с тем сохраняется и определенная общность признаков морфофизиологической организации. Это свидетельствует о происхождении данной группы от общего родоначального предка. При дивергенции сходство между организмами объясняется общностью их происхождения, аразли-чия - приспособлением к разным условиям среды.

Примером дивергенции форм является возникновение разнообразных по морфофизиологическим особенностям вьюрков от одного или немногих предковых видов на Галапагосских островах. Расхождение внутривидовых форм и видов по разным местообитаниям определяется конкуренцией в борьбе за одинаковые условия, выход из которых и заключается в расселении по разным экологическим нишам.

Еще один способ осуществления макроэволюции -параллелизм (параллельное развитие). Это процесс эволюционного развития в сходном направлении двух или нескольких первоначально дивергировавших групп. Например, палеонтологи очень часто обнаруживают асинхронный параллелизм, т. е. независимое приобретение сходных черт родственными, но живущими в разное время организмами. Примером может служить развитие саблезубости у представителей разных подсемейств кошачьих. С генетической точки зрения параллельная эволюция объясняется общностью генной структуры родственных групп и сходной ее изменчивостью.

В эволюции может наблюдаться также конвергенция (конвергентное развитие) - процесс эволюционного развития двух или более неродственных групп в сходном направлении. Конвергенция обусловлена одинаковой средой обитания, в которую попадают неродственные организмы. Классическим примером конвергентного развития считается возникновение сходных форм тела у акуловых (первичноводные формы), ихтиозавров и китообразных (вторичноводные формы). При конвергентном развитии сходство между неродственными организмами бывает всегда только внешним (эволюционным изменениям в одном направлении подвергаются внешние признаки как результат приспособления к одинаковым условиям среды). По форме тела ихтиозавр похож на акулу и дельфина, но по таким существенным чертам, как строение кожных покровов, черепа, мускулатуры, кровеносной системы, дыхательной и других систем, эти группы позвоночных различны. При конвергентном способе эволюции возникают аналогичные органы.

В) Мегаэволюция. Мегаэвол ю ция , совокупность процессов эволюции живых форм, определяющая формирование крупных таксонов - систематических категорий выше отряда (у животных) и порядка (у растений

Г) Понятие об элементарной эволюц. структуре и материале.

Выбор редакции
Есть у меня такая замечательная книжка, только все забываю куда ее деваю. Так вот, решила опубликовать здесь пост и в него вписать самые...

Подробности Категория: Физика атома и атомного ядра Опубликовано 10.03.2016 18:27 Просмотров: 5164 Древнегреческие и древнеиндийские...

Ценностями в наиболее общем смысле называют вещи и явления, имеющие существенное значение для человека и общества. Ценности обладают...

Типы населённых пунктов России Работу выполнила: ученица 6 класса Каравашкина АннаНаселённый пункт - населённое людьми место (поселение),...
Все началось в далеком 1934 году.В конце 20-х - начале 30-х годов принципиально менялась инфраструктура Челябинска. За короткое время он...
Начиная с XVII столетия наука выдвинула целый ряд классификаций человеческих рас. Сегодня их количество доходит до 15. Однако в основе...
Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13...
Определение 1 Самосознание – это биологически обусловленная способность человека осознавать самого себя.Осознавание личностью себя как...
Изменения и особенности проведения ЕГЭ в 2015 году В 2014 году на федеральном уровне приняты нормативные и процедурные особенности...