Тройной интеграл в сферических координатах примеры. Примеры решений произвольных тройных интегралов. Физические приложения тройного интеграла. Нужно ли делать чертёжи, если условие задачи не требует их выполнения


Примеры решений произвольных тройных интегралов.
Физические приложения тройного интеграла

Во 2-й части урока мы отработаем технику решения произвольных тройных интегралов , у которых подынтегральная функция трёх переменных в общем случае отлична от константы и непрерывна в области ; а также познакомимся с физическими приложениями тройного интеграла

Вновь прибывшим посетителям рекомендую начать с 1-й части, где мы рассмотрели основные понятия и задачу нахождения объема тела с помощью тройного интеграла . Остальным же предлагаю немного повторить производные функции трёх переменных , поскольку в примерах данной статьи мы будем использовать обратную операцию – частное интегрирование функции .

Кроме того, есть ещё один немаловажный момент: если у Вас неважное самочувствие, то прочтение этой странички по возможности лучше отложить. И дело не только в том, что сейчас возрастёт сложность вычислений – у большинства тройных интегралов нет надёжных способов ручной проверки, поэтому к их решению крайне нежелательно приступать в утомлённом состоянии. При пониженном тонусе целесообразно порешать что-нибудь попроще либо просто отдохнуть (я терпелив, подожду =)), чтобы в другой раз со свежей головой продолжить расправу над тройными интегралами:

Пример 13

Вычислить тройной интеграл

На практике тело также обозначают буквой , но это не очень хороший вариант, ввиду того, «вэ» «зарезервировано» под обозначение объёма.

Сразу скажу, чего делать НЕ НАДО. Не нужно пользоваться свойствами линейности и представлять интеграл в виде . Хотя если очень хочется, то можно. В конце концов, есть и небольшой плюс – запись будет хоть и длинной, но зато менее загромождённой. Но такой подход всё-таки не стандартен.

В алгоритме решения новизны будет немного. Сначала нужно разобраться с областью интегрирования. Проекция тела на плоскость представляет собой до боли знакомый треугольник:

Сверху тело ограничено плоскостью , которая проходит через начало координат. Предварительно, к слову, нужно обязательно проверить (мысленно либо на черновике) , не «срезает» ли эта плоскость часть треугольника. Для этого находим её линию пересечения с координатной плоскостью , т.е. решаем простейшую систему: – нет, данная прямая (на чертеже отсутствует) «проходит мимо», и проекция тела на плоскость действительно представляет собой треугольник.

Не сложен здесь и пространственный чертёж:

В действительности можно было ограничиться только им, поскольку проекция очень простая. …Ну, или только чертежом проекции, так как тело тоже простое =) Однако совсем ничего не чертить, напоминаю – плохой выбор.

Ну и, само собой, не могу не порадовать вас заключительной задачей:

Пример 19

Найти центр тяжести однородного тела, ограниченного поверхностями , . Выполнить чертежи данного тела и его проекции на плоскость .

Решение : искомое тело ограничено координатными плоскостями и плоскостью , которую в целях последующего построения удобно представить в отрезках : . Выберем «а» за единицу масштаба и выполним трёхмерный чертёж:

На чертеже уже поставлена готовая точка центра тяжести, однако, пока мы её не знаем.

Проекция тела на плоскость очевидна, но, тем не менее, напомню, как её найти аналитически – ведь такие простые случаи встречаются далеко не всегда. Чтобы найти прямую, по которой пересекаются плоскости нужно решить систему:

Подставляем значение в 1-е уравнение: и получаем уравнение «плоской» прямой :

Координаты центра тяжести тела вычислим по формулам
, где – объём тела.

Пусть дано материальное тело, представляющее собой пространственную область П, заполненную массой. Требуется найти массу m этого тела при условии, что в каждой точке Р € П известна плотность распределения масс. Разобьем область П на неперекрывающиеся кубируемые (т. е. имеющие объем) части с объемами соответственно. В каждой из частичных областей ft* выберем произвольнуюточкуР*. Примем приближенно, что в пределах частичной области ft* плотность постоянна и равна /*(Р*). Тогда масса Атк этой части тела выразится приближенным равенством Атпк а масса всего тела будет приближенно равна Тройной интеграл Свойства тройных интегралов Вычисление тройного интеграла в декартовых координатах Вычисление тройного интеграла в цилиндрических и сферических координатах Пусть d - наибольший из диаметров частичных областей Если при d -* 0 сумма (1) имеет конечный предел, не зависящий ни от способа разбиения области ft на частичные подобласти, ни от выбора точек Р* € ft*, то этот предел принимается за массу m заданного тела, Пусть в замкнутой кубируемой области ft определена ограниченная функция Разобьем ft на п непересекающихся кубируемых частей а их объемы обозначим через соответственно. В каждой частичной подобласти П* произвольным образом выбираем точку Рк(хк, ук, zk) и составляем интегральную сумму Пусть d - наибольший из диаметров частичных областей Определение. Если при d О интегральные суммы а имеют предел, не зависящий ни от способа разбиения области Л на частичные подобласти П*, ни от выбора точек Рк € П*, то этот предел называется тройнич интегралам от функции f(x} у, z) по области Q и обозначается символом Теорема 6. Если функция f(x, у, z) непрерывна в замкнутой кубируемой области П, то она интегрируема в этой области. Свойства тройных интегралов Свойства тройных интегралов аналогичны свойствам двойных интегралоа Перечислим основные из них. Пусть функции интегрируемы в кубируемой области Л. 1. Линейность. При этом функция называется интегрируемой в области Q. Таким образом, по определению имеем Возвращаясь к задаче о вычислении массы тела, замечаем, что предел (2) есть тройной интеграл огт фуншни р(Р) по области П. Значит, Здесь dx dy dz - элемент объема dv в прямоугольных координатах. где а и (3 - произвольные вещественные постоянные. всюду в области П,то 3. Если /(Р) = 1 в области П, то п где V - объем области Q. Если функция /(Р) непрерывна в замкнутой кубируемой области ft и М и т - ее наибольшее и наименьшее значения в ft, то где V - объем области ft. 5. Аддитивность. Если область ft разбита на кубируемые области без общих внутренних точек и f{P) интегрируема в области ft, то f(P) интегрируема на каждой из областей ft| и ft2, причем 6. Теорема о среднем значении. Теореме 7 (о среднем значении). Если функция f(P) непрерывна в замкнутой кубируемой области ft, то найдется тонка Рс € ft, такая, что будет справедлива формула где V - объем области ft (напомним, что область - связное множество). § 7. Вычисление тройного интеграла в декартовых координатах Как и при вычислении двойных интегралов, дело сводится к вычислению повторных интегралов. Предположим, что функция непрерывна в некоторой области ft. 1-й случай. Область ft представляет собой прямоугольный параллелепипед проектирующийся на плоскость yOz в прямоугольник i2; Тогда получим Заменяя двойной интеграл через повторный, окончательно получим Таким образом, в случае, когда область П - прямоугольный параллелепипед, мы свели вычисление тройного интеграла к последовательному вычислению трех обыкновенных интегралов. Формулу (2) можно переписать в виде где прямоугольник есть ортогональная проекция параллелепипеда П на плоскость хОу. 2-й случай. Рассмотрим теперь область Q такую, что ограничивающая ее поверхность 5 пересекается любой прямой, параллельной оси Oz, не более чем в двух точках или по целому отрезку (рис.22). Пусть z = tpi(x,y) уравнение поверхности 5, ограничивающей область П снизу, а поверхность S2, ограничивающая область П сверху, имеет уравнение z = у). Пусть обе поверхности S\ и S2 проектируются на одну и ту же область плоскости хОу. Обозначим ее через D, а ограничивающую ее кривую через L. Остальная часть границы 5 тела Q лежит на цилиндрической поверхности с образующими, параллельными оси Oz, и с кривой L в роли направляющей. Тогда по аналогии с формулой (3) получим Если область D плоскости хОу представляет собой криволинейную трапецию, ограниченную двумя кривыми, то двойной интеграл в формуле (4) можно свести к повторному, и мы получим окончательно Эта формула является обобщением формулы (2). Рис-23 Пример. Вычислить объем тетраэдра, ограниченного плоскостями Проекцией тетраэдра на плоскость хОу служит треугольник, образованный прямыми так что х изменяется от 0 до 6, а при фиксированном х (0 ^ х ^ 6) у изменяется от 0 до 3 - | (рис. 23). Если же фиксированы и х, и у, то точка может перемещаться по вертикали от плоскости до плоскости меняется в пределах от 0 до 6 - х - 2у. По формуле получаем §8. Вычисление тройного интеграла в цилиндрических и сферических координатах Вопрос о замене переменных в тройном интеграле решается таким же путем, как и в случае двойного интеграла. Пусть функция /(ж, у, z) непрерывна в замкнутой кубируемой области ft, а функции непрерывны вместе со своими частными производными первого порядка в замкнутой кубируемой области ft*. Предположим, что функции (1) устанавливают взаимнооднозначное соответствие между всеми точками rj, {) области ft*, с одной стороны, и всеми точками (ж, у, z) области ft - с другой. Тогда справедлива формула замены переменных в тройном интеграле - где - якобиан системы функций (1). На практике при вычислении тройных интеграловчасто пользуются заменой прямоугольных координат цилиндрическими и сферическими координатами. 8.1. Тройной интеграл в цилиндрических координатах В цилиндрической системе координат положение точки Р в пространстве определяется тремя числами р, где р и (р - полярные координаты проекции Р1 точки Р на плоскость хОу, a z - аппликата точки Р (рис.24). Числа называются цилиндрическими координатами точии Р. Ясно, что В системе цилиндрических координат координатные поверхности Тройной интеграл Свойства тройных интегралов Вычисление тройного интеграла в декартовых координатах Вычисление тройного интеграла в цилиндрических и сферических координатах соответственно описывают: круговой цилиндр, ось которого совпадает с осью Oz, полуплоскость, примыкающую к оси Oz, и плоскость, параллельную плоскости хОу. Цилиндрические координаты связаны с декартовыми следующими формулами (см. рис. 24). Для системы (3), отображающей область ft на область имеем и формула (2) перехода от тройного интеграла в прямоугольных координатах к интегралу в цилиндрических координатах принимает вид (4) Выражение называется элементом объема в цилиндрических координатах. Это выражение для элемента объема может быть получено и из геометрических соображений. Разобьем область П на элементарные подобласти координатными поверхностями и вычислим объемы полученных криволинейных призм (рис. 25). Видно, что Отбрасывая бесконечно малую величину более высокого порядка, получаем Это позволяет принять за элемент объема в цилиндрических координатах следующую величину Пример 1. Найти объем тела, ограниченного поверхностями 4 В цилиндрических координатах заданные поверхности будут иметь уравнения (см. формулы (3)). Эти поверхности пересекаются по линии г, которая описывается системой уравнений (цилиндр), (плоскость), рис 26 а ее проекция на плоскость хОу системой Таким образом, Искомый объем вычисляется по формуле (4), в которой. Тройной интеграл в сферических координатах В сферической системе координат положение точки Р(х, у, z) в пространстве определяется тремя числами, где г - расстояние от начала координат до точки угол между осью Ох и проекцией радиуса-вектора ОР точки Р на плоскость хОу, а в - угол между осью Oz и радиусом-вектором ОР точки Р, отсчитываемый от оси Oz (рис. 27). Ясно, что. Координатные поверхности в этой системе координат: г = const - сферы с центром в начале координат; ip = constполуплоскости, исходящие из оси Oz; в = const - круговые конусы с осью Oz. Рис. 27 Из рисунка видно, что сферические и декартовы координаты связаны следующими соотношениями Вычислим якобиан функций (5). Имеем Следовательно, и формула (2) принимает вид Элемент объема в сферических координатах - Выражение для элемента объема можно получить и из геометрических соображений. Рассмотрим элементарную область в пространстве, ограниченную сферами радиусов г и г + dr, конусами в и в + d$ и полуплоскостями Приближенно эту область можно считать прямоугольным параллелепипедом с измерениями. Тогда Тройной интеграл Свойства тройных интегралов Вычисление тройного интеграла в декартовых координатах Вычисление тройного интеграла в цилиндрических и сферических координатах Пример 2. Найти объем выпуклого тела Q, вырезаемого из конуса концентрическими сферами -4 Переходим к сферической системе координат Из первых двух уравнений видно, что. Из третьего уравнения находим пределы изменен угла 9: откуда

1. Цилиндрические координаты представляют соединение полярных координат в плоскости xy с обычной декартовой аппликатой z (рис. 3).

Пусть M(x, y, z) - произвольная точка в пространстве xyz, P - проекция точки M на плоскость xy. Точка M однозначно определяется тройкой чисел - полярные координаты точки P, z - аппликата точки M. Формулы, связывающие их с декартовыми, имеют вид

Якобиан отображения (8)

Пример 2 .

Вычислить интеграл

где T - область, ограниченная поверхностями

Решение. Перейдём в интеграле к сферическим координатам по формулам (9). Тогда область интегрирования можно задать неравенствами

А, значит,

Пример 3 Найти объём тела, ограниченного:

x 2 +y 2 +z 2 =8,

Имеем: x 2 +y 2 +z 2 =8 - сфера радиуса R= v8 с центром в точке O(000),

Верхняя часть конуса z 2 =x 2 +y 2 с осью симметрии Оz и вершиной в точке O (рис. 2.20).

Найдем линию пересечения сферы и конуса:

И так как по условию z ? 0, то

Окружность R=2, лежащая в плоскости z=2.

Поэтому согласно (2.28)

где область U ограничена сверху

(часть сферы),

(часть конуса);

область U проектируется на плоскости Оху в область D - круг радиуса 2.

Следовательно, целесообразно перейти в тройном интеграле к цилиндрическим координатам, используя формулы (2.36):

Пределы изменения ц, r находим по области D v полный круг R=2 с центром в точке О, тем самым: 0?ц?2р, 0?r?2. Таким образом, область U в цилиндрических координатах задается следующими неравенствами:


Заметим, что


Скачать с Depositfiles

Тройной интеграл.

Контрольные вопросы.

    Тройной интеграл, его свойства.

    Замена переменных в тройном интеграле. Вычисление тройного интеграла в цилиндрических координатах.

    Вычисление тройного интеграла в сферических координатах.

Пусть функция u = f (x,y ,z ) определена в ограниченной замкнутой области V пространства R 3 . Разобьём область V произвольным образом наn элементарных замкнутых областей V 1 , … , V n , имеющих объемы  V 1 , …, V n соответственно. Обозначим d – наибольший из диаметров областей V 1 , … , V n . В каждой области V k выберем произвольную точку P k (x k , y k , z k )и составим интегральную сумму функции f (x , y , z )

S =

Определение. Тройным интегралом от функции f (x , y , z ) по области V называется предел интегральной суммы
, если он существует.

Таким образом,



(1)

Замечание. Интегральная сумма S зависит от способа разбиения области V и выбора точек P k (k =1, …, n ). Однако, если существует предел, то он не зависит от способа разбиения области V и выбора точек P k . Если сравнить определения двойного и тройного интегралов, то легко увидеть в них полную аналогию.

Достаточное условие существования тройного интеграла. Тройной интеграл (13) существует, если функция f (x , y , z ) ограничена в V и непрерывна в V , за исключением конечного числа кусочно-гладких поверхностей, расположенных в V .

Некоторые свойства тройного интеграла.

1) Если С – числовая константа, то


3) Аддитивностьпо области. Если область V разбита на области V 1 и V 2 , то

4) Объем тела V равен


(2 )

Вычисление тройного интеграла в декартовых координатах.

Пусть D проекция тела V на плоскость xOy , поверхности z =φ 1 (x , y ), z =φ 2 (x , y ) ограничивают тело V снизу и сверху соответственно. Это значит, что

V = {(x , y , z ): (x , y )D , φ 1 (x , y ) ≤ z ≤ φ 2 (x , y )}.

Такое тело назовем z -цилиндрическим. Тройной интеграл (1) по z -цилиндрическому телу V вычисляется переходом к повторному интегралу, состоящему из двойного и определенного интегралов:




(3 )

В этом повторном интеграле сначала вычисляется внутренний определенный интеграл по переменной z , при этом x , y считаются постоянными. Затем вычисляется двойной интеграл от полученной функции по области D .

Если V x- цилиндрическое или y- цилиндрическое тело, то верны соответственно формулы



В первой формуле D проекция тела V на координатную плоскость yOz , а во второй  на плоскость xOz

Примеры. 1) Вычислитьобъем тела V , ограниченного поверхностями z = 0, x 2 + y 2 = 4, z = x 2 + y 2 .

Решение. Вычислим объём при помощи тройного интеграла по формуле (2)

Перейдем к повторному интегралу по формуле (3).

Пусть D  круг x 2 + y 2 4, φ 1 (x , y ) = 0, φ 2 (x , y )= x 2 + y 2 . Тогда по формуле (3) получим


Для вычисления этого интеграла перейдем к полярным координатам. При этом круг D преобразуется во множество

D r = { (r , φ ) : 0 ≤ φ < 2 π , 0 ≤ r ≤ 2} .



2) Тело V ограничено поверхностямиz=y , z= –y , x= 0 , x= 2, y= 1. Вычислить

Плоскости z = y , z = –y ограничиваюттелосоответственно снизу и сверху, плоскости x= 0 , x= 2 ограничивают тело соответственно сзади и спереди, а плоскость y= 1 ограничиваетсправа. V – z- цилиндрическое тело, его проекцией D на плоскость хОу является прямоугольник ОАВС . Положим φ 1 (x , y ) = –y

Преобразование двойного интеграла от прямоугольных координат ,к полярным координатам
, связанных с прямоугольными координатами соотношениями
,
, осуществляется по формуле

Если область интегрирования
ограничена двумя лучами
,
(
), выходящими из полюса, и двумя кривыми
и
, то двойной интеграл вычисляют по формуле

.

Пример 1.3. Вычислить площадь фигуры, ограниченной данными линиями:
,
,
,
.

Решение. Для вычисления площади области
воспользуемся формулой:
.

Изобразим область
(рис. 1.5). Для этого преобразуем кривые:

,
,

,
.

Перейдем к полярным координатам:

,
.

.

В полярной системе координат область
описывается уравнениями:




.

1.2. Тройные интегралы

Основные свойства тройных интегралов аналогичны свойствам двойных интегралов.

В декартовых координатах тройной интеграл обычно записывают так:

.

Если
, то тройной интеграл по областичисленно равен объему тела:

.

Вычисление тройного интеграла

Пусть область интегрирования ограничена снизу и сверху соответственно однозначными непрерывными поверхностями
,
, причем проекция областина координатную плоскость
есть плоская область
(рис. 1.6).

Тогда при фиксированных значениях
соответствующие аппликатыточек областиизменяются в пределах.

Тогда получаем:

.

Если, кроме того, проекция
определяется неравенствами

,
,

где
- однозначные непрерывные функции на
, то

.

Пример 1.4. Вычислить
, где- тело, ограниченное плоскостями:

,
,
,
(
,
,
).

Решение. Областью интегрирования является пирамида (рис. 1.7). Проекция области есть треугольник
, ограниченный прямыми
,
,
(рис. 1.8). При
аппликаты точек
удовлетворяют неравенству
, поэтому

.

Расставляя пределы интегрирования для треугольника
, получим

Тройной интеграл в цилиндрических координатах

При переходе от декартовых координат
к цилиндрическим координатам
(рис. 1.9), связанных с
соотношениями
,
,
, причем

,
,,

тройной интеграл преобразуется:

Пример 1.5. Вычислить объем тела, ограниченного поверхностями:
,
,
.

Решение. Искомый объем тела равен
.

Областью интегрирования является часть цилиндра, ограниченного снизу плоскостью
, а сверху плоскостью
(рис. 1.10). Проекция областиесть круг
с центром в начале координат и единичном радиусом.

Перейдем к цилиндрическим координатам.
,
,
. При
аппликаты точек
, удовлетворяют неравенству

или в цилиндрических координатах:

Область
, ограниченная кривой
, примет вид, или
, при этом полярный угол
. В итоге имеем

.

2. Элементы теории поля

Напомним предварительно способы вычисления криволинейных и поверхностных интегралов.

Вычисление криволинейного интеграла по координатам от функций, определенных на кривой , сводится к вычислению определенного интеграла вида

если кривая задана параметрическии
соответствует начальной точке кривой, а
- ее конечной точке.

Вычисление поверхностного интеграла от функции
, определенной на двусторонней поверхности, сводится к вычислению двойного интеграла, например, вида

,

если поверхность , заданная уравнением
, однозначно проецируется на плоскость
в область
. Здесь- угол между единичным вектором нормалик поверхностии осью
:

.

Требуемая условиями задачи сторона поверхности определяется выбором соответствующего знака в формуле (2.3).

Определение 2.1. Векторным полем
называется векторная функция точки
вместе с областью ее определения:

Векторное поле
характеризуется скалярной величиной –дивергенцией:

Определение 2.2. Потоком векторного поля
через поверхность называется поверхностный интеграл:

,

где - единичный вектор нормали к выбранной стороне поверхности, а
- скалярное произведение векторови.

Определение 2.3. Циркуляцией векторного поля

по замкнутой кривой называется криволинейный интеграл

,

где
.

Формула Остроградского-Гаусса устанавливает связь между потоком векторного поля через замкнутую поверхность и дивергенцией поля:

где - поверхность, ограниченная замкнутым контуром , а - единичный вектор нормали к этой поверхности. Направление нормали должно быть согласовано с направлением обхода контура .

Пример 2.1. Вычислить поверхностный интеграл

,

где - внешняя часть конуса
(
), отсекаемая плоскостью
(рис 2.1).

Решение. Поверхность однозначно проецируется в область
плоскости
, и интеграл вычисляется по формуле (2.2).

Единичный вектор нормали к поверхности найдем по формуле (2.3):

.

Здесь в выражении для нормали выбран знак плюс, так как угол между осью
и нормалью- тупой и, следовательно,
должен быть отрицательным. Учитывая, что
, на поверхностиполучаем

Область
есть круг
. Поэтому в последнем интеграле переходим к полярным координатам, при этом
,
:

Пример 2.2. Найти дивергенцию и ротор векторного поля
.

Решение. По формуле (2.4) получаем

Ротор данного векторного поля находим по формуле (2.5)

Пример 2.3. Найти поток векторного поля
через часть плоскости:
, расположенную в первом октанте (нормаль образует острый угол с осью
).

Решение. В силу формулы (2.6)

.

Изобразим часть плоскости :
, расположенную в первом октанте. Уравнение данной плоскости в отрезках имеет вид

(рис. 2.3). Вектор нормали к плоскости имеет координаты:
, единичный вектор нормали

.

.

,
, откуда
, следовательно,

где
- проекция плоскостина
(рис. 2.4).

Пример 2.4. Вычислить поток векторного поля через замкнутую поверхность, образованную плоскостью
и частью конуса
(
) (рис. 2.2).

Решение. Воспользуемся формулой Остроградского-Гаусса (2.8)

.

Найдем дивергенцию векторного поля по формуле (2.4):

где
- объем конуса, по которому ведется интегрирование. Воспользуемся известной формулой для вычисления объема конуса
(- радиус основания конуса,- его высота). В нашем случае получаем
. Окончательно получаем

.

Пример 2.5. Вычислить циркуляцию векторного поля
по контуру , образованному пересечением поверхностей
и
(
). Проверить результат по формуле Стокса.

Решение. Пересечением указанных поверхностей является окружность
,
(рис. 2.1). Направление обхода выбирается обычно так, чтобы ограниченная им область оставалась слева. Запишем параметрические уравнения контура :

откуда

причем параметр изменяется отдо
. По формуле (2.7) с учетом (2.1) и (2.10) получаем

.

Применим теперь формулу Стокса (2.9). В качестве поверхности , натянутой на контур , можно взять часть плоскости
. Направление нормали
к этой поверхности согласуется с направлением обхода контура . Ротор данного векторного поля вычислен в примере 2.2:
. Поэтому искомая циркуляция

где
- площадь области
.
- круг радиуса
, откуда

Выбор редакции
Реакция синтеза заключается в следующем: берутся два или больше атомных ядра и с применением некоторой силы сближаются настолько, что...

Статья рассказывает о понятии прямой на плоскости. Рассмотрим основные термины и их обозначения. Поработаем со взаимным расположением...

Сострадание - это качество, которым обладает только настоящий человек. Оно позволяет без раздумий прийти ближнему на помощь, когда это...

Повесть «Вино из одуванчиков» Брэдбери впервые была издана в 1957 году. В книге описываются события одного лета, пережитые 12-летним...
В новой книге для детей от National Geographic приводится немало занимательных фактов, о которых многие из вас наверняка не знали....
Производная экспоненты равна самой экспоненте (производная e в степени x равна e в степени x): (1) (e x )′ = e x . Производная...
Есть у меня такая замечательная книжка, только все забываю куда ее деваю. Так вот, решила опубликовать здесь пост и в него вписать самые...
Подробности Категория: Физика атома и атомного ядра Опубликовано 10.03.2016 18:27 Просмотров: 5164 Древнегреческие и древнеиндийские...
Ценностями в наиболее общем смысле называют вещи и явления, имеющие существенное значение для человека и общества. Ценности обладают...