Магнитный момент – фундаментальное свойство элементарных частиц. Магнитные моменты электронов и атомов Что называют магнитным моментом


Опыты Штерна и Герлаха

В $1921$ г. О. Штерн выдвинул идею опыта измерения магнитного момента атома. Данный эксперимент он выполнил в соавторстве с В. Герлахом в $1922$ г. Метод Штерна и Герлаха использует то, что пучок атомов (молекул) способен отклоняться в неоднородном магнитном поле. Атом, который имеет магнитный момент можно представить как элементарный магнит, имеющий малые, но конечные размеры. Если подобный магнит разместить в однородном магнитном поле, то он не испытывает силы. Поле будет действовать на северный и южный полюса такого магнита с силами, которые равны по модулю и противоположны по направлению. В результате, центр инерции атома будет покоиться или двигаться по прямой. (При этом ось магнита может совершать колебания или прецессировать). То есть, в однородном магнитном поле не возникает сил, которые действуют на атом и сообщают ему ускорение. Однородное магнитное поле не изменяет угол между направлениями индукции магнитного поля и магнитного момента атома.

Ситуация складывается иначе, если внешнее поле является неоднородным. В таком случае силы, которые действуют на северный и южный полюса магнита не равны. Результирующая сила, действующая на магнит отлична от нуля, и она сообщает атому ускорение, по полю или против него. Как результат, при перемещении в неоднородном поле рассматриваемый нами магнит отклонится от первоначального направления движения. При этом размер отклонения зависит от степени неоднородности поля. Для того, чтобы получить существенные отклонения поле должно резко изменяться уже в пределах длины магнита (линейные размеры атома $\approx {10}^{-8}см$). Такой неоднородности экспериментаторы добились с помощью конструкции магнита, который создавал поле. Один магнит в опыте имел вид лезвия, другой был плоским или обладал выемкой. Магнитные линии сгущались у «лезвия», так что напряженность в этой области была существенно больше, чем у плоского полюса. Тонкий пучок атомов пролетал между данными магнитами. Отдельные атомы отклонялись в созданном поле. Следы отдельных частиц наблюдались на экране.

Согласно представлениям классической физики в атомном пучке магнитные моменты имеют различные направления по отношению к некоторой оси $Z$. Что означает: проекция магнитного момента ($p_{mz}$) на данную ось принимает все значения интервала от $\left|p_m\right|$ до -$\left|p_m\right|$ (где $\left|p_{mz}\right|-$ модуль магнитного момента). На экране пучок должен получиться расширившимся. Однако, в квантовой физике, если учесть квантование, то возможными становятся не все ориентации магнитного момента, а только конечное их количество. Так, на экране след пучка атомов получался расщепленным на некоторое число отдельных следов.

Поставленные эксперименты показали, что например, пучок атомов лития расщепился на $24$ пучка. Это является обоснованным, так как основной термом $Li - 2S$ -- терм (один валентный электрон, имеющий спин $\frac{1}{2}\ $ на s --орбите, $l=0).$ По размерам расщепления можно сделать вывод о величине магнитного момента. Так Герлах получил доказательство того, что спиновый магнитный момент равен магнетону Бора. Исследования разных элементов показали полное согласование с теорией.

Штерн и Раби измерили магнитные моменты ядер, применяя данный подход.

Итак, если проекция $p_{mz}$ квантована, вместе с ней квантована средняя сила, которая действует на атом со стороны магнитного поля. Опыты Штерна и Герлаха доказали квантование проекции магнитного квантового числа на ось $Z$. Получилось, что магнитные моменты атомов направлены параллельно оси $Z$, под углом к данной оси они направлены быть не могут, так пришлось принять то, что ориентация магнитных моментов относительно магнитного поля изменяется дискретно. Данное явление было названо пространственным квантованием. Дискретность не только состояния атомов, но и ориентировок магнитных моментов атома во внешнем поле -- принципиально новое свойство перемещения атомов.

Полностью опыты были объяснены после открытия спина электрона , когда получили то, что магнитный момент атома вызван не орбитальным моментом электрона, а внутренним магнитным моментом частицы, который связан с его внутренним механическим моментом (спином).

Расчет движения магнитного момента в неоднородном поле

Пусть атом движется в неоднородном магнитном поле, его магнитный момент равен ${\overrightarrow{p}}_m$. На него действует сила:

Вцелом, атом является электрически нейтральной частицей, поэтому другие силы на него в магнитном поле не действуют. Исследуя движение атома в неоднородном поле можно измерить его магнитный момент. Допустим, что атом перемещается по оси $X$, неоднородность поля создана в направлении оси $Z$ (рис.1):

Рисунок 1.

\frac{}{}\frac{}{}

Используя условия (2) выражение (1) преобразуем к виду:

Магнитное поле симметрично относительно плоскости y=0. Можно предположить, что атом перемещается в данной плоскости, значит $B_x=0.$ Равенство $B_y=0$ нарушается только в небольших областях у краев магнита (этим нарушением пренебрегаем). Из выше сказанного следует, что:

В таком случае выражения (3) имеют вид:

Прецессия атомов в магнитном поле не влияет на $p_{mz}$. Уравнение движения атома в пространстве между магнитами запишем в виде:

где $m$ -- масса атома. Если атом проходит путь $a$ между магнитами, то он отклоняется от оси X на расстояние, равное:

где $v$ -- скорость атома по оси $X$. Уходя из пространства между магнитами атом продолжает перемещаться под неизменным по отношению к оси $X$ углом по прямой. В формуле (7) величины $\frac{\partial B_z}{\partial z}$, $a$, $v\ и\ m$ известны, измерив z можно сосчитать $p_{mz}$.

Пример 1

Задание: На сколько компонент, при проведении опыта аналогичного опыту Штерна и Герлаха, произойдёт расщепление пучка атомов, если они находятся в состоянии ${}^3{D_1}$?

Решение:

Терм расщепляется на $N=2J+1$ подуровней, если множитель Ланде $g\ne 0$, где

Для нахождения числа компонент, на которое расщепится пучок атомов, нам следует определить полное внутреннее квантовое число $(J)$, мультиплетность $(S)$, орбитальное квантовое число, сравнить множитель Ланде с нулем и если он отличен от нуля, то вычислить число подуровней.

1) Для этого рассмотрим структуру символической записи состояния атома ($3D_1$). Наш терм расшифруется следующим образом: символу $D$ соответствует орбитальное квантовое число $l=2$, $J=1$, мультиплетность $(S)$ равна $2S+1=3\to S=1$.

Вычислим $g,$ применив формулу (1.1):

Количество компонент, на которые расщепится пучок атомов, равен:

Ответ: $N=3.$

Пример 2

Задание: Почему в опыте Штерна и Герлаха по обнаружению спина электрона применяли пучок атомов водорода, которые находились в $1s$ состоянии?

Решение:

В $s-$ состоянии момент импульса электрона $(L)$ равен нулю, так как $l=0$:

Магнитный момент атома, который связан с движением электрона по орбите, пропорционален механическому моменту:

\[{\overrightarrow{p}}_m=-\frac{q_e}{2m}\overrightarrow{L}(2.2)\]

следовательно, равен нулю. Это означает, что магнитное поле не должно влиять на перемещение атомов водорода в основном состоянии, то есть расщеплять поток частиц. Но при использовании спектральных приборов было показано, что линии спектра водорода проявляют наличие тонкую структуру (дублеты) даже если магнитного поля нет. Для того, чтобы объяснить наличие тонко структуры и была выдвинута идея собственного механического момента импульса электрона в пространстве (спина).

  1. Магнитный момент - См. Магнетизм. Энциклопедический словарь Брокгауза и Ефрона
  2. магнитный момент - МАГНИТНЫЙ МОМЕНТ векторная величина, характеризующая магн. свойства вещества. М.м. обладают все элементарные частицы и образованные из них системы (атомные ядра, атомы, молекулы). М.м. атомов, молекул и др. Химическая энциклопедия
  3. МАГНИТНЫЙ МОМЕНТ - Основная величина, характеризующая магн. свойства в-ва. Источником магнетизма (М. м.), согласно классич. теории эл.-магн. явлений, явл. макро- и микро(атомные)- электрич. токи. Элем. источником магнетизма считают замкнутый ток. Из опыта и классич. Физический энциклопедический словарь
  4. МАГНИТНЫЙ МОМЕНТ - МАГНИТНЫЙ МОМЕНТ, измерение силы постоянного магнита или токонесущей катушки. Это максимальная поворотная сила (поворотный момент), приложенная к магниту, катушке или электрическому заряду в МАГНИТНОМ ПОЛЕ, деленная на силу поля. Заряженные частицы и атомные ядра также имеют магнитный момент. Научно-технический словарь
  5. МАГНИТНЫЙ МОМЕНТ - МАГНИТНЫЙ МОМЕНТ - векторная величина, характеризующая вещество как источник магнитного поля. Макроскопический магнитный момент создают замкнутые электрические токи и упорядоченно ориентированные магнитные моменты атомных частиц. Большой энциклопедический словарь

МАГНИТНЫЙ МОМЕНТ - физ. величина, характеризующая магн. свойства системы заряж. частиц (или отд. частицы) и определяющая наряду с др. мультипольными моментами (дипольным электрич. моментом, квадрупольным моментом и т. д., см. Мулътиполи )взаимодействие системы с внеш. эл--магн. полями и с др. подобными системами.

Согласно представлениям классич. , магн. поле создаётся движущимися электрич. . Хотя совр. теория не отвергает (и даже предсказывает) существование частиц с магн. зарядом (магнитных монополей) , такие частицы пока экспериментально не наблюдались и в обычном веществе отсутствуют. Поэтому элементарной характеристикой магн. свойств оказывается именно М. м. Система, обладающая М. м. (аксиальный вектор), на больших расстояниях от системы создаёт магн. поле


(- радиус-вектор точки наблюдения). Аналогичный вид имеет электрич. поле диполя, состоящего из двух близко расположенных электрич. зарядов противоположного знака. Однако, в отличие от электрич. дипольного момента. М. м. создаётся не системой точечных "магн. зарядов", а электрич. токами, текущими внутри системы. Если замкнутый электрич. ток течёт в ограниченном объёме V , то создаваемый им М. м. определяется ф-лой

В простейшем случае замкнутого кругового тока I , текущего вдоль плоского витка площади s, , причём вектор М. м. направлен вдоль правой нормали к витку.

Если ток создаётся стационарным движением точечных электрич. зарядов с массами , имеющими скорости , то возникающий М. м., как следует из ф-лы (1), имеет вид


где подразумевается усреднение микроскопич. величин по времени. Поскольку стоящее в правой части векторное произведение пропорционально вектору момента кол-ва движения частицы (предполагается, что скорости ), то вклады отд. частиц в М. м. и в момент кол-ва движения оказываются пропорциональными:

Коэффициент пропорциональности е/2тс наз. ; эта величина характеризует универсальную связь между магн. и механич. свойствами заряж. частиц в классич. электродинамике. Однако движение элементарных носителей заряда в веществе (электронов) подчиняется законам , вносящей коррективы в классич. картину. Помимо орбитального механич. момента кол-ва движения L электрон обладает внутренним механич. моментом - спином . Полный М. м. электрона равен сумме орбитального М. м. (2) и спинового М. м.

Как видно из этой ф-лы (вытекающей из релятивистского Дирака уравнения для электрона), гиромагн. отношение для спина оказывается ровно в два раза больше, чем для орбитального момента. Особенностью квантового представления о магн. и механич. моментах является также то, что векторы не могут иметь определённого направления в пространстве вследствие некоммутативности операторов проекции этих векторов на оси координат.

Спиновый М. м. заряж. частицы, определяемый ф-лой (3), наз. нормальным, для электрона он равен магнетону Бора. Опыт показывает, однако, что М. м. электрона отличается от (3) на величину порядка ( - постоянная тонкой структуры). Подобная добавка, называемая

Известно, что магнитное поле оказывает ориентирующее действие на рамку с током, и рамка поворачивается вокруг своей оси. Происходит это потому, что в магнитном поле на рамку действует момент сил, равный:

Здесь В - вектор индукции магнитного поля, - ток в рамке, S - ее площадь и а - угол между силовыми линиями и перпендикуляром к плоскости рамки. В это выражение входит произведение , которое называют магнитным дипольным моментом или просто магнитным моментом рамки Оказывается, величина магнитного момента полностью характеризует взаимодействие рамки с магнитным полем. Две рамки, у одной из которых большой ток и малая площадь, а у другой - большая площадь и малый ток, будут вести себя в магнитном поле одинаково, если их магнитные моменты равны. Если рамка маленькая, то ее взаимодействие с магнитным полем не зависит от ее формы.

Удобно считать магнитный момент вектором, который расположен на линии, перпендикулярной плоскости рамки. Направление вектора (вверх или вниз вдоль этой линии) определяется «правилом буравчика»: буравчик нужно расположить перпендикулярно плоскости рамки и вращать по направлению тока рамки - направление движения буравчика укажет направление вектора магнитного момента.

Таким образом, магнитный момент - это вектор , перпендикулярный плоскости рамки.

Теперь наглядно представим поведение рамки в магнитном поле. Она будет стремиться развернуться так. чтобы ее магнитный момент был направлен вдоль вектора индукции магнитного поля В. Маленькую рамку с током можно использовать в качестве простейшего «измерительного прибора» для определения вектора индукции магнитного поля.

Магнитный момент - важное понятие в физике. В состав атомов входят ядра, вокруг которых вращаются электроны. Каждый движущийся вокруг ядра электрон как заряженная частица создает ток, образуя как бы микроскопическую рамку с током. Вычислим магнитный момент одного электрона, движущегося по круговой орбите радиуса г.

Электрический ток, т. е. величина заряда, которая переносится электроном на орбите за 1 с, равна заряду электрона е, помноженному на число совершаемых им оборотов :

Следовательно, величина магнитного момента электрона равна:

Можно выразить через величину момента импульса электрона . Тогда величина магнитного момента электрона, связанная с его движением по орбите, или, как говорят, величина орбитального магнитного момента, равна:

Атом - это объект, который нельзя описать с помощью классической физики: для таких малых объектов действуют совершенно иные законы - законы квантовой механики. Тем не менее результат, полученный для орбитального магнитного момента электрона, оказывается таким же, как и в квантовой механике.

Иначе дело обстоит с собственным магнитным моментом электрона - спином, который связан с его вращением вокруг своей оси. Для спина электрона квантовая механика дает величину магнитного момента, в 2 раза большую, чем классическая физика:

и это различие между орбитальным и спиновым магнитными моментами невозможно объяснить с классической точки зрения. Полный магнитный момент атома складывается из орбитальных и спиновых магнитных моментов всех электронов, а поскольку они отличаются в 2 раза, то в выражении для магнитного момента атома появляется множитель , характеризующий состояние атома:

Таким образом, атом, как и обычная рамка с током, обладает магнитным моментом, и во многом их поведение сходно. В частности, как и в случае классической рамки, поведение атома в магнитном поле полностью определяется величиной его магнитного момента. В связи с этим понятие магнитного момента очень важно при объяснении различных физических явлений, происходящих с веществом в магнитном поле.

Различные среды при рассмотрении их магнитных свойств называют магнетиками .

Все вещества в той или иной мере взаимодействуют с магнитным полем. У некоторых материалов магнитные свойства сохраняются и в отсутствие внешнего магнитного поля. Намагничивание материалов происходит за счет токов, циркулирующих внутри атомов – вращения электронов и движения их в атоме. Поэтому намагничивание вещества следует описывать при помощи реальных атомных токов, называемых амперовскими токами.

В отсутствие внешнего магнитного поля магнитные моменты атомов вещества ориентированы обычно беспорядочно, так что создаваемые ими магнитные поля компенсируют друг друга. При наложении внешнего магнитного поля атомы стремятся сориентироваться своими магнитными моментами по направлению внешнего магнитного поля, и тогда компенсация магнитных моментов нарушается, тело приобретает магнитные свойства – намагничивается. Большинство тел намагничивается очень слабо и величина индукции магнитного поля B в таких веществах мало отличается от величины индукции магнитного поля в вакууме . Если магнитное поле слабо усиливается в веществе, то такое вещество называется парамагнетиком :

( , , , , , , Li, Na);

если ослабевает, то это диамагнетик :

(Bi, Cu, Ag, Au и др.).

Но есть вещества, обладающие сильными магнитными свойствами. Такие вещества называются ферромагнетиками :

(Fe, Co, Ni и пр.).

Эти вещества способны сохранять магнитные свойства и в отсутствие внешнего магнитного поля, представляя собой постоянные магниты.

Все тела при внесении их во внешнее магнитное поле намагничиваются в той или иной степени, т.е. создают собственное магнитное поле, которое накладывается на внешнее магнитное поле.

Магнитные свойства вещества определяются магнитными свойствами электронов и атомов.

Магнетики состоят из атомов, которые, в свою очередь, состоят из положительных ядер и, условно говоря, вращающихся вокруг них электронов.

Электрон, движущийся по орбите в атоме эквивалентен замкнутому контуру с орбитальным током :

где е – заряд электрона, ν – частота его вращения по орбите:

Орбитальному току соответствует орбитальный магнитный момент электрона

, (6.1.1)

где S – площадь орбиты, – единичный вектор нормали к S , – скорость электрона. На рисунке 6.1 показано направление орбитального магнитного момента электрона.

Электрон, движущийся по орбите, имеет орбитальный момент импульса , который направлен противоположно по отношению к и связан с ним соотношением

где m – масса электрона.

Кроме того, электрон обладает собственным моментом импульса , который называется спином электрона

, (6.1.4)

где , – постоянная Планка

Спину электрона соответствует спиновый магнитный момент электрона , направленный в противоположную сторону:

, (6.1.5)

Величину называют гиромагнитным отношением спиновых моментов

Выбор редакции
Опыты Штерна и ГерлахаВ $1921$ г. О. Штерн выдвинул идею опыта измерения магнитного момента атома. Данный эксперимент он выполнил в...

Экология жилища Выполнила Черкашина Тамара Алексеевна Учитель биологии МБУ Лицея №67 Цели и задачи  Изучить проблемы здорового «жилища»...

>>Литература 8 класс >>Литература 8 класс: В. П. Астафьев. Фотография на которой меня нет В своем произведении «Фотография, на которой...

Всем известно, что здоровье - это величайшая ценность, основа для самореализации и главное условие для выполнения людьми их социальных и...
Как считается рейтинг ◊ Рейтинг рассчитывается на основе баллов, начисленных за последнюю неделю ◊ Баллы начисляются за: ⇒ посещение...
И в то время устроил Соломон большой пир своим людям. Тогда предстали пред царем две женщины-блудницы, и сказала одна женщина: "Я в беде,...
Что такое иррациональные числа? Почему они так называются? Где они используются и что собой представляют? Немногие могут без раздумий...
Омонимами называются слова, которые совпадают по звучанию и написанию, но различаются лексическим значением и сочетаемостью с другими...
Описание презентации по отдельным слайдам: 1 слайд Описание слайда: РОДНАЯ ПРИРОДА В СТИХОТВОРЕНИЯХ РУССКИХ ПОЭТОВ 19 ВЕКА....